Autograd: 自动求导机制
PyTorch 中所有神经网络的核心是 autograd
包。 我们先简单介绍一下这个包,然后训练第一个简单的神经网络。
autograd
包为张量上的所有操作提供了自动求导。 它是一个在运行时定义的框架,这意味着反向传播是根据你的代码来确定如何运行,并且每次迭代可以是不同的。
张量(Tensor)
torch.Tensor
是这个包的核心类。如果设置 .requires_grad
为 True,那么将会追踪所有对于该张量的操作。 当完成计算后通过调用 .backward()
,自动计算所有的梯度, 这个张量的所有梯度将会自动积累到 .grad 属性
。
要阻止张量跟踪历史记录,可以调用.detach()
方法将其与计算历史记录分离,并禁止跟踪它将来的计算记录。
为了防止跟踪历史记录(和使用内存),可以将代码块包装在with torch.no_grad
()中。 在评估模型时特别有用,因为模型可能具有requires_grad = True
的可训练参数,但是我们不需要梯度计算。
在自动梯度计算中还有另外一个重要的类Function
.
Tensor
and Function
are interconnected and build up an acyclic graph, that encodes a complete history of computation. Each tensor has a .grad_fn
attribute that references a Function
that has created the Tensor
(except for Tensors created by the user - their grad_fn is None).
Tensor 和 Function互相连接并生成一个非循环图,它表示和存储了完整的计算历史。 每个张量都有一个.grad_fn属性,这个属性引用了一个创建了Tensor的Function(除非这个张量是用户手动创建的,即,这个张量的 grad_fn 是 None。
如果需要计算导数,你可以在Tensor上调用.backward()
。 如果Tensor是一个标量(即它包含一个元素数据)则不需要为backward()指定任何参数, 但是如果它有更多的元素,你需要指定一个gradient 参数来匹配张量的形状。
译者注:在其他的文章中你可能会看到说将Tensor包裹到Variable中提供自动梯度计算,Variable 这个在0.41版中已经被标注为过期了,现在可以直接使用Tensor,官方文档在这里: (https://pytorch.org/docs/stable/autograd.html#variable-deprecated)
具体的后面会有详细说明
import torch
创建一个张量并设置 requires_grad=True
用来追踪他的计算历史
x=torch.ones(2,2,requires_grad=True)
x
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
对张量进行操作:
y
是由于操作而创建的,因此具有grad_fn
。
y=x+2
y
tensor([[3., 3.],
[3., 3.]], grad_fn=<AddBackward0>)
y.grad_fn
<AddBackward0 at 0xdd2c2b0>
对y
进行一个操作
z=y*y*3
out=z.mean()
print(z)
print(out)
tensor([[27., 27.],
[27., 27.]], grad_fn=<MulBackward0>)
tensor(27., grad_fn=<MeanBackward0>)
.requires_grad_( … ) 可以改变现有张量的 requires_grad属性。 如果没有指定的话,默认输入的flag是 False。
a=torch.randn(2,2)
a=((a*3)/(a-1))
print(a.requires_grad)
a.requires_grad_(True)
print(a.requires_grad)
b=(a*a).sum()
print(b.grad_fn)
False
True
<SumBackward0 object at 0x000000000DD0DC88>
梯度
现在我们进行反向传播。 因为out
包含一个标量(scalar),所以out.backward()
等同于out.backward(torch.tensor(1.))
。
out
tensor(27., grad_fn=<MeanBackward0>)
#z.sum().backward() #如果没有输出out这一项的时候进行求导 得出x.grad=18
out.backward() #如果out是标量(scalar),则不需要
计算梯度 d(out)/dx
x
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
x.grad
tensor([[4.5000, 4.5000],
[4.5000, 4.5000]])
可以得到一个包含值4.5的矩阵.
调用 out Tensor “ o o o”.前面的函数 y = x + 2 y=x+2 y=x+2, z = y × y × 3 z=y×y×3 z=y×y×3
得到 o = 1 4 ∑ i z i o = \frac{1}{4}\sum_i z_i o=41∑izi, z i = 3 ( x i + 2 ) 2 z_i = 3(x_i+2)^2 zi=3(xi+2)2 and z i ∣ x i = 1 = 27 z_i\bigr\rvert_{x_i=1} = 27 zi∣∣xi=1=27.
因此, ∂ o ∂ x i = 3 2 ( x i + 2 ) \frac{\partial o}{\partial x_i} = \frac{3}{2}(x_i+2) ∂xi∂o=23(xi+2), hence ∂ o ∂ x i ∣ x i = 1 = 9 2 = 4.5 \frac{\partial o}{\partial x_i}\bigr\rvert_{x_i=1} = \frac{9}{2} = 4.5 ∂xi∂o∣∣xi=1=29=4.5.
之所以前面有 1 4 \frac{1}{4} 41是因为矩阵 x x x中含有四个值,如果含有九个值,就是 1 9 \frac{1}{9} 91
如果你有一个向量值函数
y
⃗
=
f
(
x
⃗
)
\vec{y}=f(\vec{x})
y=f(x),那么
y
⃗
\vec{y}
y相对于
x
⃗
\vec{x}
x的梯度是一个Jacobian矩阵:
J
=
(
∂
y
1
∂
x
1
⋯
∂
y
1
∂
x
n
⋮
⋱
⋮
∂
y
m
∂
x
1
⋯
∂
y
m
∂
x
n
)
J=\left(\begin{array}{ccc}{\frac{\partial y_{1}}{\partial x_{1}}} & {\cdots} & {\frac{\partial y_{1}}{\partial x_{n}}} \\ {\vdots} & {\ddots} & {\vdots} \\ {\frac{\partial y_{m}}{\partial x_{1}}} & {\cdots} & {\frac{\partial y_{m}}{\partial x_{n}}}\end{array}\right)
J=⎝⎜⎛∂x1∂y1⋮∂x1∂ym⋯⋱⋯∂xn∂y1⋮∂xn∂ym⎠⎟⎞
可以使用 autograd 做更多的操作
x=torch.rand(3,requires_grad=True)
x
tensor([0.4658, 0.8040, 0.6128], requires_grad=True)
y=x * 2
y
tensor([0.9316, 1.6080, 1.2256], grad_fn=<MulBackward0>)
y.data.norm() # 等价于 torch.sqrt(torch.sum(torch.pow(y,2)))
tensor(2.2261)
while y.data.norm()<1000:
y=y*3
y
tensor([ 679.1189, 1172.2533, 893.4659], grad_fn=<MulBackward0>)
现在,在这种情况下,y
不再是标量(Scalar)。 torch.autograd
无法直接计算完整的雅可比行列式,但是如果我们只想要向量-雅可比积,只需将向量传递给backward
作为参数即可:
v = torch.tensor([0.1, 1.0, 0.0001], dtype=torch.float) #V是因为形势和y类似才这样类比
v
tensor([1.0000e-01, 1.0000e+00, 1.0000e-04])
y.backward(v)
print(x.grad)
tensor([1.4580e+02, 1.4580e+03, 1.4580e-01])
如果.requires_grad=True但是你又不希望进行autograd的计算, 那么可以将变量包裹在 with torch.no_grad()中:
print(x.requires_grad)
print((x ** 2).requires_grad)
with torch.no_grad():
print((x ** 2).requires_grad)
True
True
False
稍后阅读:
autograd 和 Function 的官方文档