蒲丰投针原理
1777年法国科学家 HYPERLINK "/view/577679.htm" \t "_blank" 蒲丰提出的一种计算 HYPERLINK "/view/3287.htm" \t "_blank" 圆周率的方法——随机投针法,即著名的蒲丰投针问题。
投针步骤
这一方法的步骤是:
1) 取一张白纸,在上面画上许多条间距为d的平行线。
2) 取一根长度为l(l
3)计算针与直线相交的概率.
18世纪,法国数学家蒲丰和勒可莱尔提出的“投针问题”,记载于布丰1777年出版的著作中:“在平面上画有一组间距为d的平行线,将一根长度为l(l
p=2l/(πd) π为圆周率
利用这个公式可以用概率的方法得到圆周率的近似值。下面是一些资料
实验者
年代
投掷次数
相交次数
圆周率估计值
HYPERLINK "/view/112817.htm" \t "_blank" 沃尔夫
1850
5000
2531
3.1596
HYPERLINK "/view/268449.htm" \t "_blank" 史密斯
1855
3204
1219
3.1554
HYPERLINK "/view/333771.htm" \t "_blank" 德摩根
1680
600
383
3.137
HYPERLINK "/view/170515.htm" \t "_blank" 福克斯
1884
1030
489
3.1595
HYPERLINK "/view/1037872.htm" \t "_blank" 拉泽里尼
1901
3408
1808
3.1415929
HYPERLINK "/view/1037878.htm" \t "_blank" 赖纳
1925
2520
859
3.1795
蒲丰投针实验是第一个用几何形式表达概率问题的例子,他首次使用随机实验处理确定性数学问题,为概率论的发展起到一定的推动作用。
像投针实验一样,用通过概率实验所求的概率来估计我们感兴趣的一个量,这样的方法称为蒙特卡罗方法(Monte Carlo method)。蒙特卡罗方法是在第二次世界大战期间随着计算机的诞生而兴起和发展起来的。这种方法在应用物理、原子能、固体物理、化学、生态学、社会学以及经济行为等领域中得到广泛利用。
法国数学家布丰(1707-1788)最早设计了投针试验。并于1777年给出了针与平行线相交的概率的计算公式P=2L/πd(其中L是针的长度,d是平行线间的距离,π是圆周率)。
由于它与π有关,于是人们想到利用投针试验来估计圆周率的值。
此外,随便说出3个正数,以这3个正数为边长可以围成一个钝角三角形的概率P也与π有关,这个概率为 (π-2)/4,证明如下:
设这三个正数为x,y,z,不妨设x≤y≤z,对于每一个确定的z,则必须满足x+y>z,x²+y²;﹤z²;,容易证明这两个式子即为以这3个正数为边长可以围成一个钝角三角形的充要条件,用线性规划可知满足题设的可行域为直线x+y=z与圆x²+y²=z²;围成的弓形,总的可行域为一个边长为z的正方形,则可以围成一个钝角三角形的概率P=S弓形/S正方形=(πz²/4-z²/2)/z²=(π-2)/4.因为对于每一个z,这个概率都为(π-2)/4,因此对于任意的正数x,y,z,有P=(π-2)/4,命题得证。
为了估算π的值,我们需要通过实验来估计它的概率,这一过程可交由计算机编程来实现,事实上x+y>z,x²+y²;﹤z²;等价于(x+y-z)(x²+y²-z²;)﹤0,因此只需检验这一个式子是否成立即可。若进行了m次随机试验,有n次满足该式,当m足够大时,n/m趋近于(π-2)/4,令n/m=(π-2)/4,解得π=4n/m+2,即可估计出π值。
值得注意的是这里采用的方法:设计一个适当的试验,它的概率与我们感兴趣的一个量(如π)有关,然后利用试验结果来估计这个量,随着计算机等现代技术的发展,这一方法已经发展为具有广泛应用性的蒙特卡罗方法。
计算π最稀奇方法之一
计算π的最为稀奇的方法之一,要数18世纪法国的博物学家C·布丰和他的投针实验:在一个平面上,用尺画一组相距为d的平行线;一根长度小于d的针,扔到画了线的平面上;如果针与线相交,则该次扔出被认为是有利的,否则则是不利的.
布丰惊奇地发现:有利的扔出与不利的扔出两者次数的比,是一个包含π的表示式.如果针的长度等于d,那么有利扔出的概率为2/