python静态分析工具_7 个顶级静态代码分析工具

本文介绍了七个顶级的Python静态代码分析工具,包括DeepSource、SonarQube、Codacy、DeepScan、Embold、Veracode和Reshift。这些工具能帮助开发者在代码审查时自动发现和修复问题,提升代码质量和安全性,支持多种编程语言,并可与CI/CD集成。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者丨 Saif Sadiq

策划丨田晓旭

静态代码分析或源代码分析是指使用静态代码分析工具对软件的 " 静态 " ( 不运行的 ) 代码进行分析的一种方法,找出代码中潜在的漏洞。静态代码分析器检查源代码,找出特定的漏洞,并检查代码是否符合各种编码标准。

1 为什么要进行静态代码分析?

在执行代码之前获取代码洞见;

与动态分析相比,执行速度更快;

可以对代码质量维护进行自动化;

在早期阶段 ( 尽管不是所有阶段 ) 可以自动检索 bug;

在早期阶段可以自动发现安全问题;

如果你在使用带有静态分析器的 IDE ( 例如遵循 PEP8 的 Pycharm ) ,那你已经在 " 船 " 上了。

在知道了什么是静态代码分析之后,接下来就有必要了解一下市场上有哪些好用的静态代码分析工具。废话不多说,让我们来看看现在比较流行的静态代码分析工具。

2DeepSource

DeepSource 可以帮你在代码评审期间自动发现并修复代码中的问题。它可以与 Bitbucket、GitHub 或 GitLab 帐户集成。这个工具可以找出反模式、bug 风险、性能问题。DeepSource 还会生成并跟踪各种指标(例如依赖项计数、文档覆盖率等)。分析器先发现文件级别的问题 ( 如在特定位置发现反模式 ) ,并进一步发现代码库级别的问题 ( 如发现有些依赖项没有安装 ) 。DeepSource Autofix 会为检测到的问题提出修复建议,并创建一个修复的拉取请求。

https://deepsource.io

关键特性

单个文件配置;

对拉取请求进行质量检查;问题频谱;

维护活跃度分析器;

可以详细了解每一个问题;

跟踪代码指标;

定制分析,可以忽略掉一些问题;

分析器可以为经常发生的问题提出修复建议,如果允许的话,它们还可以创建修复过的拉取请求;

对每个代码提交和拉取请求进行

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值