matlab分段拟合程序,如何在Matlab中通过一系列分段线拟合曲线?

本文介绍了一种分段线性逼近的方法,适用于已有函数的近似。通过自适应选择节点来确保逼近精度,特别是在函数导数较大区域采用更密集的采样点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先,您的问题不称为曲线拟合.曲线拟合就是在您拥有数据时,从某种意义上说,您可以找到描述它的最佳函数.另一方面,您希望创建函数的分段线性逼近.

我建议采取以下策略:

>手动拆分为部分.截面尺寸应取决于导数,大导数 – >小节

>在节之间的节点处对函数进行采样

>找到通过上述点的线性插值.

以下是执行此操作的代码示例.您可以看到红线(插值)非常接近原始函数,尽管部分数量很少.这是由于自适应部分大小而发生的.

function fitLogLog()

x = 2:1000;

y = log(log(x));

%# Find section sizes, by using an inverse of the approximation of the derivative

numOfSections = 20;

indexes = round(linspace(1,numel(y),numOfSections));

derivativeApprox = diff(y(indexes));

inverseDerivative = 1./derivativeApprox;

weightOfSection = inverseDerivative/sum(inverseDerivative);

totalRange = max(x(:))-min(x(:));

sectionSize = weightOfSection.* totalRange;

%# The relevant nodes

xNodes = x(1) + [ 0 cumsum(sectionSize)];

yNodes = log(log(xNodes));

figure;plot(x,y);

hold on;

plot (xNodes,yNodes,'r');

scatter (xNodes,yNodes,'r');

legend('log(log(x))','adaptive linear interpolation');

end

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值