opencv 最大连通域_OpenCV之二值图像 联通组件寻找

本文介绍了如何使用OpenCV进行二值图像的最大连通域分析,包括连通组件标记算法的概念,以及该算法在OpenCV中的应用。代码示例展示了在Python中进行连通组件扫描的基本步骤,强调背景为黑色,前景为白色的重要性。文章提到了两种常见的算法:一步法(基于图的搜索)和两步法(基于扫描与等价类合并)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

python代码:

import cv2 as cv
import numpy as np


def connected_components_demo(src):
    src = cv.GaussianBlur(src, (3, 3), 0)
    gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
    ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)
    cv.imshow("binary", binary)

    output = cv.connectedComponents(binary, connectivity=8, ltype=cv.CV_32S)
    num_labels = output[0]
    labels = output[1]
    colors = []
    for i in range(num_labels):
        b = np.random.randint(0, 256)
        g = np.random.randint(0, 256)
        r = np.random.randint(0, 256)
        colors.append((b, g, r))

    colors[0] = (0, 0, 0)
    h, w = gray.shape
    image = np.zeros((h, w, 3), dtype=np.uint8)
    for row in range(h):
        for col in range(w):
            image[row, col] = colors[labels[row, col]]

    cv.imshow("colored labels", image)
    cv.imwrite("./labels.png", image)
    print("total rice : ", num_labels - 1)


src = cv.imread("./test.png")
h, w = src.shape[:2]
connected_components_demo(src)
cv.waitKey(0)
cv.destroyAllWindows()

b78b350dfd21ec879c0fa0abf0e541f8.png
#include <opencv2/opencv.hpp>
#include <iostream>

using namespace cv;
using namespace std;

RNG rng(12345);
void connected_component_demo(Mat &image);
int main(int argc, char** argv) {
	Mat src = imread("./test.png");
	if (src.empty()) {
		printf("could not load image...n");
	}
	imshow("input", src);
	connected_component_demo(src);

	waitKey(0);
	return 0;
}

void connected_component_demo(Mat &image) {
	// extract labels
	Mat gray, binary;
	GaussianBlur(image, image, Size(3, 3), 0);
	cvtColor(image, gray, COLOR_BGR2GRAY);
	threshold(gray, binary, 0, 255, THRESH_BINARY | THRESH_OTSU);
	Mat labels = Mat::zeros(image.size(), CV_32S);
	int num_labels = connectedComponents(binary, labels, 8, CV_32S);
	printf("total labels : %dn", (num_labels - 1));
	vector<Vec3b> colors(num_labels);

	// background color
	colors[0] = Vec3b(0, 0, 0);

	// object color
	for (int i = 1; i < num_labels; i++) {
		colors[i] = Vec3b(rng.uniform(0, 256), rng.uniform(0, 256), rng.uniform(0, 256));
	}

	// render result
	Mat dst = Mat::zeros(image.size(), image.type());
	int w = image.cols;
	int h = image.rows;
	for (int row = 0; row < h; row++) {
		for (int col = 0; col < w; col++) {
			int label = labels.at<int>(row, col);
			if (label == 0) continue;
			dst.at<Vec3b>(row, col) = colors[label];
		}
	}
	imshow("ccla-demo", dst);
	imwrite("./ccla_dst.png", dst);
}

连通组件标记算法介绍

连接组件标记算法(connected component labeling algorithm)是图像分析中最常用的算法之一,算法的实质是扫描二值图像的每个像素点,对于像素值相同的而且相互连通分为相同的组(group),最终得到图像中所有的像素连通组件。扫描的方式可以是从上到下,从左到右,对于一幅有N个像素的图像来说,最大连通组件个数为N/2。扫描是基于每个像素单位,OpenCV中进行连通组件扫码调用的时候必须保证背景像素是黑色、前景像素是白色。最常见的连通组件扫码有如下两类算法:

1. 一步法,基于图的搜索算法

2. 两步法、基于扫描与等价类合并算法

61ab06eb010f09d725cae2da4966a3cc.png

OpenCV学习笔记代码,欢迎follow:

MachineLP/OpenCV-​github.com
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值