python代码:
import cv2 as cv
import numpy as np
def connected_components_demo(src):
src = cv.GaussianBlur(src, (3, 3), 0)
gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)
cv.imshow("binary", binary)
output = cv.connectedComponents(binary, connectivity=8, ltype=cv.CV_32S)
num_labels = output[0]
labels = output[1]
colors = []
for i in range(num_labels):
b = np.random.randint(0, 256)
g = np.random.randint(0, 256)
r = np.random.randint(0, 256)
colors.append((b, g, r))
colors[0] = (0, 0, 0)
h, w = gray.shape
image = np.zeros((h, w, 3), dtype=np.uint8)
for row in range(h):
for col in range(w):
image[row, col] = colors[labels[row, col]]
cv.imshow("colored labels", image)
cv.imwrite("./labels.png", image)
print("total rice : ", num_labels - 1)
src = cv.imread("./test.png")
h, w = src.shape[:2]
connected_components_demo(src)
cv.waitKey(0)
cv.destroyAllWindows()

#include <opencv2/opencv.hpp>
#include <iostream>
using namespace cv;
using namespace std;
RNG rng(12345);
void connected_component_demo(Mat &image);
int main(int argc, char** argv) {
Mat src = imread("./test.png");
if (src.empty()) {
printf("could not load image...n");
}
imshow("input", src);
connected_component_demo(src);
waitKey(0);
return 0;
}
void connected_component_demo(Mat &image) {
// extract labels
Mat gray, binary;
GaussianBlur(image, image, Size(3, 3), 0);
cvtColor(image, gray, COLOR_BGR2GRAY);
threshold(gray, binary, 0, 255, THRESH_BINARY | THRESH_OTSU);
Mat labels = Mat::zeros(image.size(), CV_32S);
int num_labels = connectedComponents(binary, labels, 8, CV_32S);
printf("total labels : %dn", (num_labels - 1));
vector<Vec3b> colors(num_labels);
// background color
colors[0] = Vec3b(0, 0, 0);
// object color
for (int i = 1; i < num_labels; i++) {
colors[i] = Vec3b(rng.uniform(0, 256), rng.uniform(0, 256), rng.uniform(0, 256));
}
// render result
Mat dst = Mat::zeros(image.size(), image.type());
int w = image.cols;
int h = image.rows;
for (int row = 0; row < h; row++) {
for (int col = 0; col < w; col++) {
int label = labels.at<int>(row, col);
if (label == 0) continue;
dst.at<Vec3b>(row, col) = colors[label];
}
}
imshow("ccla-demo", dst);
imwrite("./ccla_dst.png", dst);
}
连通组件标记算法介绍
连接组件标记算法(connected component labeling algorithm)是图像分析中最常用的算法之一,算法的实质是扫描二值图像的每个像素点,对于像素值相同的而且相互连通分为相同的组(group),最终得到图像中所有的像素连通组件。扫描的方式可以是从上到下,从左到右,对于一幅有N个像素的图像来说,最大连通组件个数为N/2。扫描是基于每个像素单位,OpenCV中进行连通组件扫码调用的时候必须保证背景像素是黑色、前景像素是白色。最常见的连通组件扫码有如下两类算法:
1. 一步法,基于图的搜索算法
2. 两步法、基于扫描与等价类合并算法

OpenCV学习笔记代码,欢迎follow:
MachineLP/OpenCV-github.com