一不小心就来了
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
14、 深入解析数据挖掘中的事务聚类算法
本文深入解析了CURE算法在数据挖掘中的应用,包括其工作原理、应用场景及优化方法。通过实际案例分析和与其他聚类算法的比较,展示了CURE算法的优势与未来发展方向,如结合深度学习、流数据处理和多模态数据聚类等。原创 2025-06-10 16:05:19 · 56 阅读 · 0 评论 -
13、 知识发现与数据挖掘的应用与实践
本文探讨了知识发现与数据挖掘(KDD)技术的基本原理及其在实际应用中的具体实现,包括核心概念、技术基础、应用案例及未来发展趋势。文章通过详细介绍数据挖掘的流程、常用算法以及在市场营销、医疗健康、电子商务和金融等领域的应用实例,展示了数据挖掘技术如何为企业和社会创造价值。原创 2025-06-09 11:25:56 · 38 阅读 · 0 评论 -
12、 数据挖掘中的关联规则与序列模式挖掘
本文深入探讨了数据挖掘中的关联规则与序列模式挖掘技术,包括基本概念、常用算法及实际应用案例。通过分析Apriori和PrefixSpan等经典算法,展示了如何在电商推荐系统和金融市场预测中应用这些技术,并讨论了算法优化与技术改进的方向。原创 2025-06-08 13:46:08 · 41 阅读 · 0 评论 -
11、 数据挖掘与知识发现的应用实践
本文详细介绍了数据挖掘的基本概念、技术方法以及在电商推荐、金融风险评估和医疗健康监测等领域的实际应用案例。同时,探讨了数据挖掘面临的挑战及未来发展趋势,如数据质量提升、模型解释性增强和隐私保护加强等,展望了其在智慧城市、智能制造和智能交通等领域的广阔前景。原创 2025-06-07 13:01:05 · 40 阅读 · 0 评论 -
10、 多文档共享主题提取与文本挖掘技术的应用
本文详细介绍了多文档共享主题提取的技术原理及其应用场景,包括加权二分图模型和广义相互加强原理等方法论,并探讨了优化策略及实际项目中的实施步骤。这项技术在新闻聚合、社交媒体监测和学术文献综述等领域具有重要价值。原创 2025-06-06 09:14:49 · 33 阅读 · 0 评论 -
9、 数据挖掘中的关联规则挖掘技术及其应用
本文深入探讨了数据挖掘中关联规则挖掘的基本原理、经典算法以及实际应用场景。从频繁项集与支持度的概念到Apriori和FP-Growth等算法的详细解析,再到H-mine和CHARM等新兴算法的介绍,全面展示了关联规则挖掘的技术发展。同时,通过零售业、医疗保健和金融风控的实际案例分享,展示了其在不同领域的应用价值。原创 2025-06-05 12:09:59 · 31 阅读 · 0 评论 -
8、 数据挖掘中的高效算法及其应用
本文深入探讨了数据挖掘中的高效算法及其应用,包括序列模式挖掘、关联规则挖掘、空间时间序列分析、Web挖掘和贝叶斯网络等技术。通过实际案例和技术细节的分析,展示了这些算法在电子商务、医疗诊断和气象预报等领域的广泛应用和巨大潜力。原创 2025-06-04 14:50:38 · 38 阅读 · 0 评论 -
7、 数据挖掘与知识发现的前沿探索
本文围绕数据挖掘与知识发现的核心技术及应用场景展开讨论,从数据挖掘基础到频繁模式挖掘,再到基于图结构的数据挖掘方法,最后探讨了其在社交网络分析、生物信息学和金融风险管理等领域的新兴应用。原创 2025-06-03 14:35:12 · 33 阅读 · 0 评论 -
6、 探索数据挖掘中的频繁模式发现
本文深入探讨了数据挖掘中的频繁模式发现技术,包括基本概念、经典算法(如Apriori、FP-Growth和PrefixSpan)以及实际应用场景。同时,文章还介绍了技术优化方法和未来发展方向,帮助读者更好地理解和应用频繁模式发现技术解决实际问题。原创 2025-06-02 09:25:28 · 47 阅读 · 0 评论 -
5、 数据挖掘作为自动化服务:实现与优化
本文详细介绍了自动化数据挖掘服务的核心概念、工作流程及其优化方法,涵盖数据理解、数据准备、建模与评估以及结果部署等多个关键环节,旨在帮助组织以较低成本实现高质量的数据挖掘和分析服务。原创 2025-06-01 12:59:40 · 53 阅读 · 0 评论 -
4、 数据挖掘与知识发现的应用实践
本文详细介绍了数据挖掘与知识发现的基本概念、技术要点及其在多个领域的应用实践。从分类和聚类算法到关联规则和序列模式挖掘,再到电子商务、医疗健康和金融风控中的实际案例,全面展示了数据挖掘技术的价值与挑战。同时探讨了数据质量问题、模型优化及高维数据处理等关键问题,并提出了相应的解决思路。原创 2025-05-31 10:29:19 · 32 阅读 · 0 评论 -
3、 聚类算法:数据挖掘中的核心工具
本文深入探讨了聚类算法在数据挖掘中的应用,包括迭代聚类方法(如K-Means、K-Medoids和CLARANS)和层次聚类方法(如凝聚层次聚类和分裂层次聚类)。同时介绍了如何选择合适的聚类方法,并通过内部和外部评估指标对聚类结果进行量化分析。原创 2025-05-30 14:04:08 · 43 阅读 · 0 评论 -
2、 数据挖掘与知识发现:前沿技术与应用
本文深入探讨了数据挖掘与知识发现的核心技术及其在电子商务、金融、医疗健康等领域的应用案例。从关联规则挖掘、分类、聚类到高级技术如序列模式挖掘、时间序列分析和图数据挖掘,再到优化方法和未来发展方向,全面解析了数据挖掘的技术细节及挑战。原创 2025-05-29 12:08:14 · 40 阅读 · 0 评论 -
1、 数据挖掘与知识发现:技术与应用
本文详细介绍了数据挖掘与知识发现的基本概念、常用技术及应用场景,涵盖分类、回归、聚类等主要任务,并深入解析支持向量机、随机森林、线性回归等算法的技术细节。同时,通过金融行业信用评估、医疗健康疾病预测、电子商务商品推荐等实践案例,展示了数据挖掘在实际工作中的应用价值。原创 2025-05-28 10:40:36 · 39 阅读 · 0 评论