用 Tarjan 算法求解无向图的割点和割边

上期回顾:https://www.cnblogs.com/ofnoname/p/18823922

Tarjan 算法与无向图

连接性分析是图论的核心,而Tarjan算法为我们提供了穿透复杂网络结构的通用方法。之前,我们深入探讨了Tarjan如何利用深度优先搜索(DFS) 的时间戳(dfn[])和回溯值(low[]) 的概念,高效地识别有向图中的强连通分量(SCC)。这种方法通过维护栈结构和巧妙的时间戳比较,将看似复杂的连通性问题转化为优雅的线性时间解决方案。

现在,当我们从有向图转向无向图领域,一个全新的连通性问题浮出水面:如何识别无向图中的割点(cut vertices)割桥(bridges)

有趣的是,尽管问题领域不同,Tarjan算法展现出了惊人的通用性。在无向图中,DFS遍历同样会生成一棵搜索树,但这里有一个关键差异:由于无向图任两点总是互相可达(连通的话),无向图的DFS树不存在横叉边。当我们在无向图上执行DFS时,所有非树边都必然是连接节点与其祖先的返祖边(back edges)。这一特性简化了连通性分析,使得我们可以继续延用dfnlow这对黄金搭档:

  • dfn[u]:节点u的DFS访问时间戳(不变的含义)
  • low[u]:记录节点u通过树边和最多一条返祖边能到达的最小时间戳

理解无向图割点不仅具有理论价值,更是许多实际系统的基石。想象一下:当这些关键节点代表网络路由器、电力枢纽或社交网络中的信息桥梁时,识别它们就成为了系统可靠性的第一道防线。这也是网络可靠性分析、社交网络关键人物识别、交通枢纽规划等实际应用中的核心问题。

无向图割点问题

在无向图 G = ( V , E ) G=(V,E) G=(V,E) 中,顶点 u 被称为割点(cut vertex/articulation point),当且仅当删除 u 及其关联边后,图的连通分量数量增加。

想象一个现实的网络:割点就像关键枢纽站,如果它瘫痪,整个网络会被分割成孤立区域;社交网络中,割点就是那个连接不同社群的关键人物;在计算机网络中,割点相当于核心路由器,一旦故障会导致子网断开连接。

image

割点的求解

总不可能依次去掉点来验证新图是否连通吧!这是仍需要使用 Tarjan 算法。

  1. 初始化

    • 为每个节点维护两个数组:dfn[u]为DFS访问 u 的时间戳;low[u]为 u 通过树边或一条返祖边能到达的最小时间戳
    • 设置全局计数器timestamp,统计时间戳
  2. DFS遍历:进行遍历,按照规则更新时间戳和可达的最小时间戳数组。


   
def dfs(u, parent):
初始化 dfn[u] = low[u]
child_count = 0
for v in neighbors(u):
if v == parent: continue # 关键:跳过父节点
if not visited[v]:
child_count += 1
dfs(v, u)
low[u] = min(low[u], low[v]) # 更新回溯值
# 割点判断条件
if (u不是根 and low[v] >= dfn[u]) or
(u是根 and child_count >= 2):
mark u as cut vertex
else:
low[u] = min(low[u], dfn[v]) # 处理返祖边
  1. 割点判断条件
    • 根节点:当且仅当在DFS树中有≥2个子树
    • 非根节点:当且仅当存在子节点v满足low[v] >= dfn[u]

正确性证明

为什么low[v] >= dfn[u]能检测割点?
按照定义,low[v] >= dfn[u]意味着v的子树无法绕过u访问更早的祖先,删除u后,v的子树将与其他部分断开。反证:若存在其他路径,则low[v]应小于dfn[u]

image

而根节点比较特殊,因为其在搜索树中没有父节点了。只要他有大于1个子树,删除根节点就会让子树分开,所以根节点是割点。


   
class Graph {
vector<vector<int>> edges; // 邻接表
int n; // 顶点数
int time = 0; // 全局时间戳
vector<int> disc; // 发现时间(dfn)
vector<int> low; // 回溯值
vector<bool> isCut; // 记录割点
vector<int> parent; // 父节点数组
void dfs(int u) {
disc[u] = low[u] = ++time;
int children = 0; // 记录子树数量
for (int v : edges[u]) {
// 跳过父节点
if (v == parent[u]) continue;
if (disc[v] == 0) { // 未访问
parent[v] = u;
children++;
dfs(v);
// 更新当前节点的low值
low[u] = min(low[u], low[v]);
// 非根节点割点判断
if (parent[u] != -1 && low[v] >= disc[u]) {
isCut[u] = true;
}
}
// 处理返祖边
else {
low[u] = min(low[u], disc[v]);
}
}
// 根节点特殊判断
if (parent[u] == -1 && children >= 2) {
isCut[u] = true;
}
}
public:
Graph(int n) : n(n), edges(n), disc(n, 0), low(n, 0),
isCut(n, false), parent(n, -1) {}
// 无向图添加双向边
void addEdge(int u, int v) {
edges[u].push_back(v);
edges[v].push_back(u);
}
// 寻找所有割点
vector<int> findCutVertices() {
for (int i = 0; i < n; ++i) {
if (disc[i] == 0) {
parent[i] = -1; // 标记为根
dfs(i);
}
}
vector<int> result;
for (int i = 0; i < n; ++i) {
if (isCut[i]) result.push_back(i);
}
return result;
}
void printCutVertices() const {
cout << "Cut Vertices: ";
for (int i = 0; i < n; ++i) {
if (isCut[i]) cout << i << " ";
}
cout << endl;
}
};

复杂度分析

  • 时间复杂度 O ( V + E ) O(V+E) O(V+E)。DFS 里每个节点和边只访问一次
  • 空间复杂度 O ( V ) O(V) O(V) 存储disclowparent等数组

无向图割边问题

在无向图 G = ( V , E ) G=(V,E) G=(V,E) 中,边 e = ( u , v ) e=(u,v) e=(u,v) 被称为割边(bridge)或桥,当且仅当删除该边后,图的连通分量数量增加。割边如同连接岛屿的最后一座桥梁,一旦断裂,陆地便永远分离。

与割点的关键区别在于,我们仅删除单一边。割点可能影响多个连通分量,割边必定只影响两个连通分量。

割边的求解

在无重边的无向图中,割边检测只需对割点算法做一处关键修改


   
// 割点判断条件
if (low[v] >= dfn[u]) → u 是割点
// 割边判断条件
if (low[v] > dfn[u]) → 边(u,v)是割边

为什么条件更严格?

  • low[v] >= dfn[u] 意味着v的子树无法绕过u
  • low[v] > dfn[u] 意味着v的子树甚至无法到达u本身

image

几何解释

设 u 是 v 的父节点,边 (u,v) 为树边:

  • 若存在返祖边使low[v] = dfn[u],则v的子树能直接连回u
  • low[v] > dfn[u],则v的子树只能到达比u更晚的节点
  • 删除 (u,v) 后,v 的子树与 u 的连通性被完全破坏

   
class Graph {
// ...
vector<pair<int, int>> bridges; // 新增:存储割边
void dfs(int u) {
// ...
if (disc[v] == 0) { // 未访问节点
// ...
// 割边判断(关键修改:> 而非 >=)
if (low[v] > disc[u]) {
bridges.push_back({min(u, v), max(u, v)}); // 避免重复
}
}
else { // 已访问节点(返祖边)
low[u] = min(low[u], disc[v]);
}
}
// 根节点割点判断
if (parent[u] == -1 && children >= 2) {
isCut[u] = true;
}
}
public:
Graph(int n) : n(n), edges(n), disc(n, 0), low(n, 0),
parent(n, -1), isCut(n, false) {}
void addEdge(int u, int v) {
edges[u].push_back(v);
edges[v].push_back(u);
}
// 返回割点列表
vector<int> getCutVertices() {
// 初始化
fill(disc.begin(), disc.end(), 0);
fill(low.begin(), low.end(), 0);
fill(parent.begin(), parent.end(), -1);
fill(isCut.begin(), isCut.end(), false);
bridges.clear();
time = 0;
for (int i = 0; i < n; ++i) {
if (disc[i] == 0) dfs(i);
}
vector<int> result;
for (int i = 0; i < n; ++i) {
if (isCut[i]) result.push_back(i);
}
return result;
}
// 返回割边列表(按字典序排序)
vector<pair<int, int>> getBridges() {
getCutVertices(); // 计算同时获取割点和割边
sort(bridges.begin(), bridges.end()); // 排序保证输出一致
return bridges;
}
void printBridges() {
auto res = getBridges();
cout << "Bridges:\n";
for (auto [u, v] : res) {
cout << u << " - " << v << endl;
}
}
};

有重边情况的处理

有一个问题在于,上述实现假设图中不存在重边(即任意两节点间最多一条边)。当存在重边时,原推论显然不再正确。若节点 u 和 v 间有 k 条重边,则他们都不可能是割边(删除一条还有其他连接),需要再稍作修改。

处理重边的关键在于区分普通树边与返祖边(重边中的非树边应视为有效的返祖边)。当一个节点到其父亲有多于一条边时,我们就允许其通过多余的边返回父亲,将其视为一般的返祖边。


   
for (int v : edges[u]) {
// 原始跳过:if (v == parent[u]) continue;
// 重边适应:允许通过父节点的重边更新low
if (v == parent[u]) {
if (edgeCount[u][v] > 1) { // 存在重边
low[u] = min(low[u], disc[v]); // 视为返祖边
}
continue;
}
// ...其余逻辑不变
}

   
if (low[v] > disc[u]) {
if (edgeCount[u][v] == 1) { // 必须是单边
bridges.push_back({u, v});
}
}
原创作者: ofnoname 转载于: https://www.cnblogs.com/ofnoname/p/18956980
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值