利用scikit-learn下的knn实现kaggle的手写数字识别问题

这篇博客介绍了如何利用scikit-learn库中的KNN算法,在Kaggle的Digit Recognizer比赛中进行手写数字识别。通过简单的Python代码(3.5版本)处理数据,训练KNN分类器,并对测试集进行预测。虽然sklearn使得机器学习过程简化,但因数据量大,程序执行时间较长,特别是模型训练阶段。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目的数据来自于kaggle的Digit Recognizer(手写数字识别),https://www.kaggle.com/c/digit-recognizer/data。 python代码如下(python的版本是3.5):

# -*- coding:utf-8 -*-
'''
Created on 2017年3月28日

@author: okcing

手写数字识别
'''
import csv
from sklearn import neighbors

#导入训练数据和测试数据
def loadData(filename1,filename2,trainDataSet,trainTargetSet,testDataSet):
    with open(filename1,'r') as csvfile1:
        lines1 = csv.reader(csvfile1)
        dataSet = list(
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值