>>> img0
array([[[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19]],
[[20, 21, 22, 23, 24],
[25, 26, 27, 28, 29],
[30, 31, 32, 33, 34],
[35, 36, 37, 38, 39]],
[[40, 41, 42, 43, 44],
[45, 46, 47, 48, 49],
[50, 51, 52, 53, 54],
[55, 56, 57, 58, 59]]])
# 矩阵级别的平均
>>> np.average(img0, axis=0)
array([[20., 21., 22., 23., 24.],
[25., 26., 27., 28., 29.],
[30., 31., 32., 33., 34.],
[35., 36., 37., 38., 39.]])
# 行级别的平均, 行与行之间的比较, 也就是竖着的元素之间的比较,e.g. a[0] 代表某一行, a[1]代表相邻的下一行, a[0][j] 与a[1][j]的比较, j属于(0, n), 看起来就像是竖着比较。
>>> np.average(img0, axis=1)
array([[ 7.5, 8.5, 9.5, 10.5, 11.5],
[27.5, 28.5, 29.5, 30.5, 31.5],
[47.5, 48.5, 49.5, 50.5, 51.5]])
# 元素级别的平均,看起来像是处理是处理每一行中的所有元素。
axis=1 与axis=2 之间的不同之处:
axis=1时是行与行之间某个相同位置的元素的处理
axis=2 是某一行内元素的处理
如果不指定axis, 就是全局平均
>>> np.average(img0)
29.5
np.average用法
最新推荐文章于 2025-05-25 19:47:48 发布