//
// main.c
// Fourer1D
//
// Created by Tony on 14/11/16.
// Copyright (c) 2014年 Tony. All rights reserved.
//
#include
#include
#include
#include
//mac下M_PI在math.h中有宏定义,所以这里我们选择行的宏定义
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
#define SIZE 1024*16
#define VALUE_MAX 1000
////////////////////////////////////////////////////////////////////
//定义一个复数结构体
///////////////////////////////////////////////////////////////////
struct Complex_{
double real;
double imagin;
};
typedef struct Complex_ Complex;
////////////////////////////////////////////////////////////////////
//定义一个复数计算,包括乘法,加法,减法
///////////////////////////////////////////////////////////////////
void Add_Complex(Complex * src1,Complex *src2,Complex *dst){
dst->imagin=src1->imagin+src2->imagin;
dst->real=src1->real+src2->real;
}
void Sub_Complex(Complex * src1,Complex *src2,Complex *dst){
dst->imagin=src1->imagin-src2->imagin;
dst->real=src1->real-src2->real;
}
void Multy_Complex(Complex * src1,Complex *src2,Complex *dst){
double r1=0.0,r2=0.0;
double i1=0.0,i2=0.0;
r1=src1->real;
r2=src2->real;
i1=src1->imagin;
i2=src2->imagin;
dst->imagin=r1*i2+r2*i1;
dst->real=r1*r2-i1*i2;
}
////////////////////////////////////////////////////////////////////
//在FFT中有一个WN的n次方项,在迭代中会不断用到,具体见算法说明
///////////////////////////////////////////////////////////////////
void getWN(double n,double size_n,Complex * dst){
double x=2.0*M_PI*n/size_n;
dst->imagin=-sin(x);
dst->real=cos(x);
}
////////////////////////////////////////////////////////////////////
//随机生成一个输入,显示数据部分已经注释掉了
//注释掉的显示部分为数据显示,可以观察结果
///////////////////////////////////////////////////////////////////
void setInput(double * data,int n){
//printf("Setinput signal:\n");
srand((int)time(0));
for(int i=0;i
data[i]=rand()%VALUE_MAX;
//printf("%lf\n",data[i]);
}
}
////////////////////////////////////////////////////////////////////
//定义DFT函数,其原理为简单的DFT定义,时间复杂度O(n^2),
//下面函数中有两层循环,每层循环的step为1,size为n,故为O(n*n),
//注释掉的显示部分为数据显示,可以观察结果
///////////////////////////////////////////////////////////////////
void DFT(double * src,Complex * dst,int size){
clock_t start,end;
start=clock();
for(int m=0;m
double real=0.0;
double imagin=0.0;
for(int n=0;n
double x=M_PI*2*m*n;
real+=src[n]*cos(x/size);
imagin+=src[n]*(-sin(x/size));
}
dst[m].imagin=imagin;
dst[m].real=real;
/* if(imagin>=0.0)
printf("%lf+%lfj\n",real,imagin);
else
printf("%lf%lfj\n",real,imagin);*/
}
end=clock();
printf("DFT use time :%lf for Datasize of:%d\n",(double)(end-start)/CLOCKS_PER_SEC,size);
}
////////////////////////////////////////////////////////////////////
//定义IDFT函数,其原理为简单的IDFT定义,时间复杂度O(n^2),
//下面函数中有两层循环,每层循环的step为1,size为n,故为O(n*n),
///////////////////////////////////////////////////////////////////
void IDFT(Complex *src,Complex *dst,int size){
clock_t start,end;
start=clock();
for(int m=0;m
double real=0.0;
double imagin=0.0;
for(int n=0;n
double x=M_PI*2*m*n/size;
real+=src[n].real*cos(x)-src[n].imagin*sin(x);
imagin+=src[n].real*sin(x)+src[n].imagin*cos(x);
}
real/=SIZE;
imagin/=SIZE;
if(dst!=NULL){
dst[m].real=real;
dst[m].imagin=imagin;
}
if(imagin>=0.0)
printf("%lf+%lfj\n",real,imagin);
else
printf("%lf%lfj\n",real,imagin);
}
end=clock();
printf("IDFT use time :%lfs for Datasize of:%d\n",(double)(end-start)/CLOCKS_PER_SEC,size);
}
////////////////////////////////////////////////////////////////////
//定义FFT的初始化数据,因为FFT的数据经过重新映射,递归结构
///////////////////////////////////////////////////////////////////
int FFT_remap(double * src,int size_n){
if(size_n==1)
return 0;
double * temp=(double *)malloc(sizeof(double)*size_n);
for(int i=0;i
if(i%2==0)
temp[i/2]=src[i];
else
temp[(size_n+i)/2]=src[i];
for(int i=0;i
src[i]=temp[i];
free(temp);
FFT_remap(src, size_n/2);
FFT_remap(src+size_n/2, size_n/2);
return 1;
}
////////////////////////////////////////////////////////////////////
//定义FFT,具体见算法说明,注释掉的显示部分为数据显示,可以观察结果
///////////////////////////////////////////////////////////////////
void FFT(double * src,Complex * dst,int size_n){
FFT_remap(src, size_n);
// for(int i=0;i
// printf("%lf\n",src[i]);
clock_t start,end;
start=clock();
int k=size_n;
int z=0;
while (k/=2) {
z++;
}
k=z;
if(size_n!=(1<
exit(0);
Complex * src_com=(Complex*)malloc(sizeof(Complex)*size_n);
if(src_com==NULL)
exit(0);
for(int i=0;i
src_com[i].real=src[i];
src_com[i].imagin=0;
}
for(int i=0;i
z=0;
for(int j=0;j
if((j/(1<
Complex wn;
getWN(z, size_n, &wn);
Multy_Complex(&src_com[j], &wn,&src_com[j]);
z+=1<
Complex temp;
int neighbour=j-(1<
temp.real=src_com[neighbour].real;
temp.imagin=src_com[neighbour].imagin;
Add_Complex(&temp, &src_com[j], &src_com[neighbour]);
Sub_Complex(&temp, &src_com[j], &src_com[j]);
}
else
z=0;
}
}
/* for(int i=0;i
if(src_com[i].imagin>=0.0){
printf("%lf+%lfj\n",src_com[i].real,src_com[i].imagin);
}
else
printf("%lf%lfj\n",src_com[i].real,src_com[i].imagin);*/
for(int i=0;i
dst[i].imagin=src_com[i].imagin;
dst[i].real=src_com[i].real;
}
end=clock();
printf("FFT use time :%lfs for Datasize of:%d\n",(double)(end-start)/CLOCKS_PER_SEC,size_n);
}
////////////////////////////////////////////////////////////////////
int main(int argc, const char * argv[]) {
double input[SIZE];
Complex dst[SIZE];
setInput(input,SIZE);
printf("\n\n");
DFT(input, dst, SIZE);
printf("\n\n");
FFT(input, dst, SIZE);
//IDFT(dst, NULL, SIZE);
getchar();
}
测试结果:
其中时间都为s,FFT优势明显