tensorflow的交叉熵函数_logloss==交叉熵

博客指出很多人看了AI相关书籍,一直未区分开logloss和交叉熵,实际上二者粗略来说是同一事物,尤其对初学者,此结论很重要,虽在其他方面有细微差异,但可不必理会,还提到TensorFlow有对应实现,二分类时二者作用相同。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

看了ai的N本书,一直没有区分开logloss和交叉熵,还以为是两个东西。

粗略的说,这俩玩意儿就是一个玩意儿。特别是对于初学者来说,这个结论太重要了。虽然在其它方面有点点不同,但是建议大家不需去理会。

请参考:

What is the difference between cross-entropy and log loss error?​stackoverflow.com
a3f6da542411f2fffdf413911e679965.png

如果想看的更清楚,请参考。

Neural networks and deep learning​neuralnetworksanddeeplearning.com
e6af8ea111b162c3cf18050137026500.png

实现上,tensorflow有对应的实现。请参考文章

刘大力:Tensorflow 中的损失函数 —— loss 专题汇总​zhuanlan.zhihu.com
1298b98c8ed928c2c7831c429f8fad8f.png

文章里介绍了logloss和交叉熵,二分类时作用是一样的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值