Matlab中的稀疏矩阵绘散点图,matlab 稀疏矩阵

本文介绍了MATLAB中稀疏矩阵的概念,包括完全存储与稀疏存储方式,重点阐述了如何将完全存储转换为稀疏存储,以及如何创建稀疏矩阵。通过示例展示了sparse函数的用法,如sparse(X)、sparse(u,v,S)和spconvert(A),还提到了带状稀疏矩阵的生成方法spdiags。此外,文章还提及了speye(m,n)用于创建稀疏单位矩阵。" 126317389,5703193,配置工业边缘网关的静态IP地址,"['工业边缘网关', '边缘计算', '物联网']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

MATLAB的矩阵有两种存储方式,完全存储方式和稀疏存储方式 1.完全存储方式

将矩阵的全部元素按列存储,矩阵中的全部零元素也存储到矩阵中。 2.稀疏存储方式

仅存储矩阵所有的非零元素的值及其位置,即行号和列号,显然这对于具有大量零元素的稀疏矩阵来说是十分有效的。 设

1 0 0 0 A=   0 5 0 0    2 0 0 7

是具有稀疏矩阵特征的矩阵,其完全存储方式是按列存储的全部12个元素 1,0,2,0,5,0,0,0,0,0,0,7 其稀疏存储方式如下:

(1,1),1,(3,1),2,(2,2),5,(3,4),7 括号内为元素的行列位置,后面为元素值。

当矩阵非常的“稀疏”时,会有效的节省存储空间。

1.1.2稀疏存储方式的产生

1.将完全存储方式转化为稀疏存储方式

A=sparse(S);将S矩阵转换为稀疏矩阵A;

sparse(m,n);产生m*n的所有元素都为0的稀疏矩阵

sparse(u,v,S);S为建立系数矩阵的非零元素,u(i),v(i)分别为S(i)的行和列下标,S,u,v为等长向量。

[u,v,S]=find(A);返回矩阵A中非零元素的下标和元素,返回值可以作为sparse(u,v,S);的参数

full(A);返回和稀疏存储方式A对应的完全存储方式。

例如

X=[2,0,0,0,0;0,0,0,0,0;0,0,0,5,0;0,1,0,0,-1;0,0,0,0,-5] A=sparse(X) A=

(1,1) 2     (4,2) 1     (3,4) 5     (4,5) -1     (5,5) -5

A就是X的稀疏存储方式。

2.产生稀疏存储矩阵

sparse可以讲完全存储方式转换为稀疏存储方式,那么,当使用稀疏矩阵时,要先产生完全存储方式的矩阵

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值