行秩列秩一定相等吗_从不同的角度看矩阵的行秩与列秩

本文探讨了线性代数中矩阵行秩与列秩相等的原理,从初等变换的角度证明了这一事实,并指出传统证明方法过于依赖代数推导,缺乏直观的几何解释。作者表达了对寻求几何解释的渴望,以深化对线性相关性和矩阵秩的理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1

http://tianpeng.72pines.com/

从不同的角度看矩阵的行秩与列秩——兼论如何学好线性代数

线性代数中,有那么几个神秘又神奇的东西,总是让初学它的人琢磨不透,无法理解,其中就有矩阵的行

向量和列向量的关系,为什么一个矩阵的行向量里有多少个线性无关的向量,列向量里就一定也有多少个

线性无关的向量呢?或者考虑稍微简单一点的问题,一个方阵,为什么行向量线性无关或线性相关列向量

就一定也线性无关或相关呢?行秩为何等于列秩?

这本来应该是一个基本又简单的事实。但是,请回忆一下你当初初学线性代数时的内容编排顺序,是怎么

引入这个问题的,当时又是怎样解决这个问题的?

传统的教材编写思路是从线性方程组开始整个线性代数话题的引入,这个过程中定义行列式和矩阵,用

n

元数组引入向量,线性相关和无关等概念,讨论解存在的条件,解的结构,等等。总之,一切以方程组为

核心,给人的感觉就是线性代数就是方程组的理论,一切讨论的目的都是为了解决小小的方程组问题。

在这个过程中,有一个矩阵行秩等于列秩的命题,此时学生只了解方程组理论和行列式,因此这时对这个

问题的解释当然也无法离开方程组或行列式。下面简述两个典型的教材中的证明方法:

第一个证明来自陈志杰《高等代数与解析几何》。

证明:

首先,矩阵的初等行变换不改变矩阵的行秩,初等列变换不改变矩阵的列秩。这是由向量组的初等

变换不改变向量组的线性相关或无关性保证的,即将某个向量乘以非零的倍数、将某个向量加到另一个向

量上,都不改变向量组的线性相关或无关性。

接着证明矩阵的初等行变换不改变矩阵的列秩。

A

m*n

阶矩阵,任意从

A

n

个列向量中选取

k

个列向

### 矩阵分解中的不等式 矩阵的满分解是一种重要的线性代数工具,它通过将一个矩阵表示为两个低维子空间之间的映射来简化计算。对于任意 $ m \times n $ 的矩阵 $ A $,其向量组和向量组分别张成的空间维度称为该矩阵的 **** 和 ****。可以证明的是,这两个相等并定义为矩阵 $ r(A) $。 #### 的基本性质 设 $ A $ 是一个 $ m \times n $ 的矩阵,则有如下基本性质: $$ r(A^T A) = r(A),\quad r(AA^T) = r(A), $$ 这表明无论左乘还是右乘转置矩阵,都不会改变原矩阵[^1]。 #### 满分解的概念 如果给定一个矩阵 $ A_{m\times n} $ 并且它的为 $ r $ ($0<r<min(m,n)$),那么存在两个矩阵 $ F_{m\times r} $ 和 $ G_{n\times r} $ 使得 $ FG=A $ 成立,并满足条件 $ rank(F)=rank(G)=r $. 这种形式被称为矩阵的满分解[^2]. #### 关于的一些重要不等式 考虑三个矩阵 $ A, B, C $ 及它们之间可能存在的运算关系: 1. 对加法操作而言, $$ r(A+B)\leqslant r(A)+r(B). $$ 2. 若 $ AB=C $ 则有, $$ r(C)\geqslant max(r(A)-n+r(B),0). $$ 这些结论可以从向量空间理论以及基底变换的角度出发得到严格的数学论证过程[^3]。 #### 应用实例:最小二乘解的存在唯一性判定 在线性回归分析或者信号处理等领域经常遇到求解超定方程组的情况即当数据点数目超过未知参数数量时如何寻找最佳拟合直线等问题。此时利用上述提到过的关于式的某些特定属性可以帮助我们判断是否存在唯一的最优解路径从而进一步指导实际工程实践当中模型构建工作流程优化方向的选择决策制定依据等方面发挥重要作用[^4]。 ```python import numpy as np def full_rank_decomposition(matrix): u,s,vh=np.linalg.svd(matrix) s_nonzero=s[s>np.finfo(float).eps*max(len(u),len(vh))] k=len(s_nonzero) U=u[:,:k]*s[:k].reshape((1,k)) V=vh.T[:,:k] return (U,V) if __name__ == "__main__": matrix=np.array([[1,-2],[3,4]]) F,G=full_rank_decomposition(matrix) print("Matrix:",matrix) print("F:\n",F) print("G:\n",G) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值