弄潮儿数据_趣味统计 | 听说你也想成为大数据时代的高薪弄潮儿?

本次学术分享邀请到两位统计学专业的学长学姐,他们将分别介绍支持向量机和卷积神经网络的应用及最新进展,帮助大家高效入门机器学习与神经网络,开拓学术视野。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大数据

NO.1

Big Data

2019

趣味统计

大数据弄潮儿指南

2dfa1911448a40560dd74e352277044e.png

想了解大数据时代前沿热点?

想入门机器学习神经网络、紧跟人工智能新浪潮?

想学的知识有那么多!

想看的书有那么多!

这个门到底该怎么入更便捷?

这次,学术部有幸邀请了两位优秀的学长学姐请他们来分享相关知识

来听 让你少走弯路!!

来听 让你开拓学术视野

那还等什么?请看活动详细信息→

83e156689e07241677d7c10b76d2250e.png

活动信息

60b487a4ebbeb4370d0de7816e4df7fc.png

地点:学思楼C210

主持人:高雅

时间:12月13日 13:30

83e156689e07241677d7c10b76d2250e.png

嘉宾信息

60b487a4ebbeb4370d0de7816e4df7fc.png

王勃惠

本科数学与应用数学专业,现统计学学硕在读。主要研究方向为支持向量机与统计优化,目前参与科研项目一项,matlab编程。曾获新生奖学金。

主要分享内容:支持向量机

在机器学习方法中,主要分为监督式和无监督式学习。支持向量机是监督式学习中颇为受欢迎的一种方法,对于分类问题和回归问题都有展现出了它的魅力,并且在过拟合和高维情况下具有突出优势;也有很多新的改进方法的提出。

李正涛

本科通信工程专业,现统计学学硕在读。主要研究方向为统计诊断。本科曾获全国大学生数学建模竞赛国家一等奖。目前与郝程程老师,梁芋莉老师(瑞典)合作一篇论文(第二作者)

主要分享内容:卷积神经网络相关内容

请带好小本本 拉上室友好朋友 一起来听听大佬们的看法哟~相信你会收获满满!!

文稿 学术部 马亚婷

排版 新闻宣传中心 余凯

11ebd2aea6a049d90bcb823f58c58e20.png

SUIBE

"只关注你所关注。"

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值