【翻译】Sibyl: Host Load Prediction with an Efficient Deep Learning Model in Cloud ComputingSibyl:高效的深度学

Sibyl是一种深度学习模型,用于预测云环境中主机负载,通过指标选择模块(MSM)和双向LSTM(BILSTM)网络架构提高预测准确性和效率。MSM通过过滤无关指标降低维度,BILSTM利用双向数据处理提升预测性能。实验证明,Sibyl在减少指标的同时保持预测准确性和超越传统预测模型如ARIMA和LSTM。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


·论文链接: link.

摘要Abstract

主机负载的预测对于云计算对于提高资源利用率和达成服务级别协议至关重要。但是,在主机中准确预测主机负载仍然是一个挑战,因为负载类型会有所不同 。此外,选择用于主机负载预测的指标也是一项艰巨的任务。云系统中的指标如此之多,很难确定哪些指标将是有用的。为了解决这些挑战,本文提出了一种有效的深度学习模型,称为Sibyl,以提高预测的准确性和效率。 Sibyl包括两个部分:指标选择模块和神经网络训练模块。 Sibyl首先通过过滤不相关的指标来选择指标。之后,Sibyl应用了功能强大的神经网络模型,该模型以双向LSTM构建,可提前一步预测实际负载。我们使用Sibyl分析来自数据中心176台机器的40天负载跟踪。实验表明,Sibyl可以减少训练指标,同时保持预测准确性。此外,与其他基于自回归积分移动平均和长短期记忆的最新方法相比,Sibyl大大提高了预测准确性。

关键词Keywords

云计算·主机负载预测·时间序列分析·双向LSTM

1 介绍Introduction

主机负载预测在Cloud系统中对于指导负载平衡和保证服务级别协议(SLA)至关重要。随着云计算变得越来越流行,将不同类型的应用程序(例如Web服务器或批处理作业)部署到云系统中。但是,由于云的复杂度、大小和范围的增长,无法始终满足应用程序的资源需求,这导致违反SLA并严重降低了服务性能。主机负载的准确预测可以帮助改善资源配置并增强应用程序性能。 但是,在Clouds中选择用于主机负载预测的指标具有挑战性。许多云计算运营商提供了强大的监视工具(例如Google Stackdriver,Microsoft Cloud Monitoring,Amazon CloudWatch)。受益于这些工具,我们可以监视与主机负载相关的大量系统级指标。这些指标对于更好地理解服务性能以及预测负载的行为至关重要。但是很难确定哪种度量标准将是有用的,并且出于不同的目的,我们必须选择不同的度量标准。

由于负载的多样性,准确预测主机负载仍然是Cloud系统中的一个挑战。不同种类的负载具有不同的工作模式。有关负载预测的大多数先前工作都集中在基于传统时间序列的预测模型上,例如移动平均,自回归,自回归综合移动平均(ARIMA)和机器学习算法,例如隐马尔可夫模型[6-8]。假设未来的模式保持不变,这些模型可以很好地应对某些负载(例如批处理作业)[4]。但是,工作负载(例如Web服务器)的性能可能会急剧波动。这些模型无法处理这些复杂的观察结果。长短期记忆(LSTM)神经网络已被广泛用于解决此非线性问题[9,12,23]。由于LSTM模型使用非线性函数,因此可以更好地应对新模式的出现。但是LSTM仅在一个方向上处理数据,因此,它只能获得训练指标的部分功能,而错过了提高预测准确性的机会。

在本文中,我们设计并构建了Sibyl,这是一种有效的深度学习模型,用于选择指标并准确预测Cloud中的主机负载。 Sibyl由两个核心模块组成:(1)度量选择模块(MSM),可通过过滤掉不相关的度量来降低度量的维数;(2)应用双向长期短期记忆(BILSTM)的神经网络训练模块(BNT) 以捕获所选指标的特征并建立预测模型。

模块(1) 允许我们选择相关度量。基于度量的形状相似性,MSM将查找具有相似模式的度量,并过滤出无用的度量。 在巨大的指标空间中,有些指标与我们关注的指标无关。携带冗余信息的不相关度量标准对预测没有贡献。我们可能只需要训练几个指标而不是整个指标的预测模型。此外,降低指标的维数对于节省监视和存储额外指标的成本至关重要。

模块(2) 可以获取MSM选择的指标的特征,并准确预测主机负载。 BNT是使用BI-LSTM网络构建的。 BI-LSTM已被广泛用于文本分类和语音识别。据我们所知,我们的工作是第一个将BI-LSTM用于Cloud上下文中的主机负载预测的工作。我们建立了深层的BI-LSTM网络来双向处理数据,以更好地预测负载的趋势和大小。 BILSTM网络是端到端模型。它可以自动保存有用的数据信息。与基于LSTM的最新方法相比,我们的神经网络可以更好地捕获度量的特征并使预测更加准确。

我们使用具有176台机器的数据中心的40天负载跟踪来实施和评估模型。负载跟踪位于https://github.com/UCASzhangxiaofan/Host-load-trace。通过滤除无用的指标,我们在保持预测准确性的同时降低了训练指标的维数。与A

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值