题目描述
你来到了一个闯关游戏。
这个游戏总共有 NNN 关,每关都有 MMM 个通道,你需要选择一个通道并通往后续关卡。其中,第 iii 个通道可以让你前进 aia_iai 关,也就是说,如果你现在在第 xxx 关,那么选择第 iii 个通道后,你将直接来到第 x+aix+a_ix+ai 关(特别地,如果 x+ai≥Nx + a_i \geq Nx+ai≥N,那么你就通关了)。此外,当你顺利离开第 sss 关时,你还将获得 bsb_sbs 分。
游戏开始时,你在第 000 关。请问,你通关时最多能获得多少总分。
输入格式
第一行两个整数 NNN,MMM,分别表示关卡数量和每关的通道数量。
接下来一行 MMM 个用单个空格隔开的整数 a0,a1⋯ ,aM−1a_0,a_1\cdots,a_{M-1}a0,a1⋯,aM−1。保证 1≤ai≤N1\le a_i \le N1≤ai≤N。
接下来一行 NNN 个用单个空格隔开的整数 b0,b1⋯ ,bN−1b_0,b_1\cdots,b_{N-1}b0,b1⋯,bN−1。保证 ∣bi∣≤105|b_i|\le 10^5∣bi∣≤105。
输出格式
一行一个整数,表示你通关时最多能够获得的分数。
输入输出样例 #1
输入 #1
6 2
2 3
1 0 30 100 30 30
输出 #1
131
输入输出样例 #2
输入 #2
6 2
2 3
1 0 30 100 30 -1
输出 #2
101
说明/提示
样例解释 1
你可以在第 000 关选择第 111 个通道,获得 111 分并来到第 333 关;随后再选择第 000 个通道,获得 100100100 分并来到第 555 关;最后任选一个通道,都可以获得 303030 分并通关。如此,总得分为 1+100+30=1311+100+30=1311+100+30=131。
样例解释 2
请注意,一些关卡的得分可能是负数。
数据范围
对于 20%20\%20% 的测试点,保证 M=1M=1M=1。
对于 40%40\%40% 的测试点,保证 N≤20N \le 20N≤20;保证 M≤2M\le 2M≤2。
对于所有测试点,保证 1≤N≤1041 \le N \le 10^41≤N≤104;保证 1≤M≤1001 \le M\le 1001≤M≤100。
solution
基本的动态规划,在每一关,遍历每一个通道,保存下到每一关的最大的得分即可
代码
#include <iostream>
#include "bit"
#include "vector"
#include "unordered_set"
#include "set"
#include "queue"
#include "algorithm"
#include "bitset"
using namespace std;
const int N = 1e4 + 1;
int n, m, f[N], a[100], b[N];
int main() {
cin >> n >> m;
for (int i = 0; i < m; i++) cin >> a[i];
for (int i = 0; i < n; i++) cin >> b[i], f[i] = -1e9;
f[n] = -1e9;
f[0] = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
int k = min(n, i + a[j]);
f[k] = max(f[k], f[i] + b[i]);
}
}
cout << f[n];
}