概述
前三篇详细介绍了 Spatial-GNN 和 Spectral-GNN 的内容,这一篇博客简单的对比一下。
Graph Neural Networks (GNN)(一):Spatial-GNN
Graph Neural Networks (GNN)(二):Spectral-GNN 引言和导入
Graph Neural Networks (GNN)(三):Spectral-GNN 之 GCN
总结
其实两者是殊途同归的,所有的 GNN 都可以看成一个热传导模型/信息扩散模型。不管是 Spectral-GNN 还是 Spatial-GNN 最后都是收集领域节点的特征信息来更新自己的节点信息。只是出发点不同。
- Spatial-GNN:是直接推广 CNN 的加权求和思想,使用不同的领域节点采样方法和不同加权求和方法来更新节点特征。
- Spectral-GNN:是从 CNN 的卷积定理,f 和 g 的卷积是 f 和 g 傅里叶变换之后乘积的傅里叶逆变换。然后通过拉普拉斯矩阵来实现傅里叶变换和逆傅里叶变换。
虽然看上去差别较大,但是都是殊途同归的,最后发现 Spectral-GNN 最后也可以看成一个采样领域节点和加权求和的方式,可以把 GCN 看成很多 Spatial-GNN 的特例,例如 Monet 和 GraphSAGE 等。