Graph Neural Networks (GNN)(四):Spectral-GNN 与 Spatial-GNN 对比

概述

前三篇详细介绍了 Spatial-GNN 和 Spectral-GNN 的内容,这一篇博客简单的对比一下。
Graph Neural Networks (GNN)(一):Spatial-GNN
Graph Neural Networks (GNN)(二):Spectral-GNN 引言和导入
Graph Neural Networks (GNN)(三):Spectral-GNN 之 GCN

总结

其实两者是殊途同归的,所有的 GNN 都可以看成一个热传导模型/信息扩散模型。不管是 Spectral-GNN 还是 Spatial-GNN 最后都是收集领域节点的特征信息来更新自己的节点信息。只是出发点不同。

  • Spatial-GNN:是直接推广 CNN 的加权求和思想,使用不同的领域节点采样方法和不同加权求和方法来更新节点特征。
  • Spectral-GNN:是从 CNN 的卷积定理,f 和 g 的卷积是 f 和 g 傅里叶变换之后乘积的傅里叶逆变换。然后通过拉普拉斯矩阵来实现傅里叶变换和逆傅里叶变换。

虽然看上去差别较大,但是都是殊途同归的,最后发现 Spectral-GNN 最后也可以看成一个采样领域节点和加权求和的方式,可以把 GCN 看成很多 Spatial-GNN 的特例,例如 Monet 和 GraphSAGE 等。

Spectral-GNN:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值