本实例主要实现sklearn应用中,根据前端传入服务器的字符串,快速组装为可执行的pipline,并返回该pipline句柄,供后续程序的调用,比如fit过程及predict过程等,具体代码如下:
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.pipeline import make_pipeline
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline
df = pd.read_csv('./wdbc.csv', header=None)
# Breast Cancer Wisconsin dataset
X, y = df.values[:, 3:], df.values[:, 1]
# y为字符型标签
# 使用LabelEncoder类将其转换为0开始的数值型
encoder = LabelEncoder()
y = encoder.fit_transform(y)
X_train, X_test, y_train, y_test = train_test_split