大规模训练的一些奇技淫巧(torch)

大规模训练的一些奇技淫巧

1. 分布式训练

在这里插入图片描述
在这里插入图片描述

1.1 数据并行

   数据并行是指,通过将将模型(整个)在不同的设备部署多个副本,每个设备可以处理不同的batch,那么整体而言,我们就增大了训练时数据的吞吐量。从而加速了训练:
在这里插入图片描述

1.2 模型并行

   对不起,我没用过这么大的模型。。。但是,基本思路就是你在一个device算完模型的一部分之后,在to到另一个device就行了,参考下面:
在这里插入图片描述

2. torch里的一些奇技淫巧

   在torch里进行dataParallel, 我们大概来说有两个接口可以用使用:

  • torch.nn.DataParallel 好多人叫做DP模式
    • 前向过程的时候,DataParallel 会将输入数据平均分配成多个子部分,然后送入
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值