SERLU激活函数
文章链接:Effectiveness of Scaled Exponentially Regularized Linear Units(SERLUs)
年份:2018
1.介绍
SELU是适当缩放指数线性单元,结合中心极限理论进行归一化。SELU是一个单调递增函数,对于较大的负输入,它有一个恒定的负输出。根据SELU提出SERLU,该函数是非单调函数,同时仍然保持自归一化的性质。而且该函数通过将一个线性函数正则化为一个缩放的指数函数,在负区域引入一个凸函数,称为缩放的指数正则化线性单元。凸函数对较大的负输入具有近似为零的相应,同时通过适当的缩放负区域的凸函数,能够将SERLU的输出在统计上推向0均值。
SERLU的具体函数公式为:
f ( x ) = λ { x , x ≥ 0 α x e x , x < 0 , λ > 0 , α > 0 f(x) = \lambda \begin{cases} x, & x\ge 0\\ \alpha x e^x, &x<0 \end{cases},\lambda>0,\alpha>0 f(x)=λ{
x,αxex,x≥0x<0,λ>0,α>0
SERLU的导数为:
f ( x ) = λ { 1 , x ≥ 0 α e x ⋅ ( x + 1 ) , x < 0 f(x) = \