在一个二维的棋盘上,每个格子有存活(1)和死亡(0)两种状态。在每个时间周期,每个格子会根据他的8个邻居来决定自己下一个周期的状态:
- 0-1个邻居:人口稀少,死亡(0);
- 2个邻居:保持原状态;
- 3个邻居:繁衍(1);
- 4+个邻居:人口过多,死亡(0);
这个游戏原来是设计在一个无限的网格里,但是在这个电路中,我们设计为16*16的网格,为了让这次练习更有趣,我们把网格边界拓扑环绕到对立的另一边。举个例子,(0,0)的8个邻居分别是(15,1), (15,0), (15,15), (0,1), (0,15), (1,1), (1,0), 和 (1,15).
我们把16*16的网格设置为一个256位的向量,每一行表示为q[15:0]、q[31:16]等等。
- load:加载数据到q中作为初始状态。
- q:16*16网格的当前状态,在每个时钟周期更新。
设计要点:
- 需要两个棋盘,一个存储现态,另一存储次态。
- 不能立即更新,需要现态中每个格子的8个邻居,不能将次态立即赋值给每个格子的现态。
设计思路:通过for循环语句遍历每一个格子,计算出每个格子的邻居数量,然后得到下一状态q_next。在每个边界应该分情况考虑,四个角和四个边的格子都有特殊的8个邻居。在遍历完256个格子之后将q_next的值赋给q,我们注意到在always过程块中,我们一律使用了阻塞赋值,因为不需要产生触发器,我们要在计算后立即赋值,才能做到没有一个周期的延迟。在Verilog中关系运算符不能这样使用:0<i<15,而应该0<i & i<15.
module top_module(
input clk,
input load,
input [255:0] data,
output [255:0] q );
reg [255:0] q_next;
reg [3:0]sum;
always@(posedge clk)
if(load)
q <= data;
else begin
for(int i = 0;i < 256;i++) begin
if(i==0)//左上角
sum = q[1]+q[16]+q[17]+q[240]+q[241]+q[15]+q[31]+q[255];
else if(i==15)//右上角
sum = q[14]+q[16]+q[0]+q[240]+q[254]+q[30]+q[31]+q[255];
else if(i==240)//左下角
sum = q[0]+q[15]+q[239]+q[241]+q[1]+q[224]+q[225]+q[255];
else if(i==255)//右下角
sum = q[0]+q[15]+q[14]+q[224]+q[238]+q[240]+q[239]+q[254];
else if(0<i & i<15)//上边界
sum = q[i-1]+q[i+1]+q[i+15]+q[i+16]+q[i+17]+q[i+239]+q[i+240]+q[i+241];
else if(i%16==0)//左边界
sum = q[i-1]+q[i+1]+q[i+15]+q[i+16]+q[i+17]+q[i-16]+q[i-15]+q[i+31];
else if(i%16==15)//右边界
sum = q[i-1]+q[i+1]+q[i+15]+q[i+16]+q[i-17]+q[i-16]+q[i-15]+q[i-31];
else if(240<i & i<255)//下边界
sum = q[i-1]+q[i+1]+q[i-17]+q[i-16]+q[i-15]+q[i-239]+q[i-240]+q[i-241];
else //非边界
sum = q[i-1]+q[i+1]+q[i-17]+q[i-16]+q[i-15]+q[i+15]+q[i+16]+q[i+17];
case(sum) //根据邻居数量判断次态
2:q_next[i]=q[i];
3:q_next[i]=1;
default:q_next[i]=0;
endcase
end
q = q_next;
end
endmodule
上述程序较为繁琐,希望能够找到一个简单的方法,下面是有关的两个网站:
在线模拟康威生命游戏https://bitstorm.org/gameoflife/