行人重识别——三元损失函数及其实现

本文介绍了三元损失函数在行人重识别中的应用,探讨了结合难例挖掘和soft margin的原因,并提供了nn.TripletMarginLoss、nn.MarginRankingLoss和nn.SoftMarginLoss的PyTorch实现解析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

什么是三元损失函数?

三元损失函数是行人重识别里非常常见的一个损失函数,其目的就是相对于负样本xnx_nxn拉近某一个样本xax_axa和它的正样本xpx_pxp的距离。
Ltri=max(∥xa−xp∥−∥xa−xn∥+margin,0)L_{tri}=max(∥x_a−x_p∥−∥x_a−x_n∥+margin,0)Ltri=max(xaxp<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值