
slam14讲
slam让我头疼
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
重投影误差和光度误差与雅可比矩阵
2*6的那个雅克比矩阵是误差对于扰动的小量位姿的偏导数原创 2020-09-27 20:05:57 · 2218 阅读 · 1 评论 -
非线性优化与卡尔曼滤波
卡尔曼滤波与最小二乘在本质上是一样的。目标相同:都是为了滤去在SLAM模型对应的运动方程和观测方程中的噪声求解思路相同:利用后验概率=似然概率*先验概率假设条件相同:状态量包括相机位姿、路标位置、观测数据都满足高斯分布不同:最小二乘法定义数据与估计值之间的误差,在状态量x、观测量z均满足高斯分布条件下,通过最小化概率密度负对数,建立误差关于状态量、观测量的方程,用求解最小二乘的方法进行求解;卡尔曼滤波直接利用k-1时刻的状态量推导当前时刻的先验分布,根据运动方程和预测方程进行求解卡尔曼增益,进..原创 2020-09-26 21:44:38 · 1767 阅读 · 0 评论 -
视觉里程计v1
2D-2D输入:匹配点的像素坐标;相机内参输出:相机位姿R、t,点在世界坐标系中的位置说明:位姿是相对位姿,是当前帧相对于参考帧的旋转、平移量构成的变换。求解思路:三位场景中的同一个三维点在不同视角下的像点存在着一种约束关系:对极约束,基础矩阵E是这种约束关系的代数表示,并且这种约束关系独立与场景的结构,只依赖与相机的内参K和外参R、 t。1、可以通过通过匹配的像点对计算出两幅图像的基础矩阵E,2、然后分解基础矩阵得到相机的相对位姿R t。3D-2DP3P求解相机位姿输入:3对3D-2D原创 2020-09-08 16:28:25 · 222 阅读 · 0 评论 -
typedef std::shared_ptr<Frame> Ptr理解
slam14讲重点摘出来的一句typedef std::shared_ptr<Frame> Ptr;//这是关于typedef的用法https://blog.csdn.net/hai008007/article/details/80651886class Frame{public: typedef std::shared_ptr<Frame> Ptr; unsigned long id_; // id o原创 2020-09-07 09:18:48 · 3684 阅读 · 0 评论 -
读取ymal文件
FileStorage是OpenCV中XML和YAML文件的存储类,封装了所有相关的信息。它是OpenCV从文件中读数据或向文件中写数据时必须要使用的一个类。可以通过实例化成对象后,用来作为参数配置文件供多个源代码文件进行读取。ymal 用作参数文件,写文件时可建立新文件,读文件时该文件必须要存在;同时一定要指定清楚读、写(WRITE\READ)//写入数据#include "opencv2/opencv.hpp"//在头文件中需要加入opencv的头文件using namespace cv;i原创 2020-09-07 08:47:39 · 416 阅读 · 0 评论 -
cmake
cmake在cmake工程中,根据CMakeLists文件内容,组织源文件和库文件,用cmake命令生成makefile文件,然后用make命令根据makefile文件得内容编译整个过程。command window编译时的命令//编译cmake工程,建立一个build文件夹存放编译过程中产生的中间文件。//在终端以此输入如下命令mkdir buildcd buildcmake ..make当提供了库文件和对应的头文件才可以调用该库。在Linux中,库文件分为静态库(以.a为后缀名)和原创 2020-09-03 18:53:32 · 221 阅读 · 0 评论