huggingface的参数使用(HfArgumentParser+parser.parse_args_into_dataclasses+TrainingArguments)

前言

在使用大模型时候,我们经常遇到参数传参问题,如何构建一个参数方法,即可使用默认参数,也可使用命令方式传参,是大模型构建的第一步。而大模型经常使用HfArgumentParser+parser.parse_args_into_dataclasses+transformers.TrainingArguments等方式来实现。介于此,我解读了大模型通用构建方法,重在方法掌握,而参数如何构建可通过你自己的想法。

一、parser.parse_args_into_dataclasses

1、parse_args_into_dataclasses的原理

parser.parse_args_into_dataclasses() 是 Hugging Face Transformers 库中的一个方法,用于解析命令行参数并将其转换为 Python 的数据类(dataclass)。在Hugging Face的transformers库中,这个方法通常用于处理模型训练、评估、预测等任务的命令行参数。这些参数可以包括模型类型、训练步数、学习率、数据集路径等。这个方法的工作原理是,它会查找当前模块或父模块中定义的任何数据类(使用@dataclass装饰器定义的类),然后将命令行参数(通常通过argparse模块解析)映射到这些数据类的字段。

2、什么是数据类(dataclass)?

import argparse def args_parser(): parser = argparse.ArgumentParser() ### new parser.add_argument('--exp', type=str, default='VEIN/UNET_FL', help='experiment_name') parser.add_argument('--labeled_num', type=int, default=1000, help='labeled data') parser.add_argument('--model', type=str, default='unet_fl', help='model_name') parser.add_argument('--num_classes', type=int, default=2, help='output channel of network') parser.add_argument('--gpu', type=str, default='0,1', help='GPU to use') parser.add_argument('--deterministic', type=int, default=1, help='whether use deterministic training') parser.add_argument('--seed', type=int, default=1337, help='random seed') parser.add_argument('--root_path', type=str, default='/data3/vein/vein-train-1000-480-640', help='dataset root dir') parser.add_argument('--num_users', type=int, default=10, help='local epoch') parser.add_argument('--batch_size', type=int, default=4, help='batch_size per gpu') parser.add_argument('--base_lr', type=float, default=1e-4, help='segmentation network learning rate') parser.add_argument('--max_iterations', type=int, default=1000, help='maximum epoch number to train') parser.add_argument('--rounds', type=int, default=50, help='local epoch') parser.add_argument('--local_ep', type=int, default=1, help='local epoch') parser.add_argument('--dataset_seg', type=str, default='vein', help='dataset') parser.add_argument('--in_chan', type=int, default=1, help='input channel') parser.add_argument('--base_chan', type=int, default=32, help='base channel') parser.add_argument('--out_chan', type=int, default=2, help='out channel') parser.add_argument('--reduce_size', type=list, default=[9,12], help='reduce size') #parser.add_argument('--local_train', type=int, default=1000, help='local train time') parser.add_argument('--root_path_unlabeled', type=str, default='/data3/vein/vein-train-unlabel-2000-480-640', help='dataset root dir of unlabeled data') parser.add_argument('--each_length', type=int, default=225, help='data number each length') parser.add_argument('--dist_scale', type=int, default=0.01, help='scale factor when computing model distance') parser.add_argument("--max_grad_norm", dest="max_grad_norm", type=float, default=5, help="max gradient norm allowed (used for gradient clipping)") parser.add_argument('--num-warmup-epochs', '--num-warm-up-epochs', dest="num_warmup_epochs", default=0, type=int, help='number of warm-up epochs for unsupervised loss ramp-up during training' 'set to 0 to disable ramp-up') parser.add_argument('--lambda_u', type=float, default=100, help='start_epoch') parser.add_argument('--ema_decay', type=float, default=0.999, help='ema_decay') parser.add_argument('--consistency', type=float, default=0.1, help='consistency') parser.add_argument('--consistency_rampup', type=float, default=200.0, help='consistency_rampup') parser.add_argument('--labeled_bs', type=int, default=4, help='labeled_batch_size per gpu') parser.add_argument('--ict_alpha', type=int, default=0.2, help='ict_alpha') args = parser.parse_args() return args
最新发布
07-27
<think>我们正在讨论深度学习项目中参数配置的作用和含义,特别是argparse库的使用。用户的问题集中在“解析argparse参数配置及其在深度学习训练中的作用”。结合之前的引用,我们可以从以下几个方面展开: 1. **argparse库的作用**:用于解析命令行参数,使得用户可以在运行程序时动态修改配置,而无需修改源代码。 2. **参数配置在深度学习训练中的重要性**:深度学习模型训练涉及大量超参数(如学习率、批量大小、迭代次数等),通过参数配置可以灵活调整实验设置。 3. **argparse与其他配置方式(如YACS、YAML)的结合**:在实际项目中,往往需要更复杂的配置管理,因此常将命令行参数与配置文件结合使用。 根据引用[1]和[3],我们可以详细介绍argparse使用方法,包括创建解析器、添加参数、解析参数等步骤。同时,引用[2]展示了如何将argparse与YACS库结合使用,以实现更灵活的配置管理。 下面我将按照以下结构组织回答: - 一、argparse的基本使用 - 二、参数配置在深度学习训练中的作用 - 三、结合YACS库的进阶配置方法 - 四、实际代码示例 - 五、相关问题 注意:由于用户要求使用中文回答,并正确使用LaTeX格式,我们将确保所有数学表达式(如果有)正确使用$...$或$$...$$。</think>### 深度学习参数配置解析:argparse的作用与实现 #### 一、argparse参数配置的核心作用 在深度学习训练中,argparse参数配置系统主要解决三类问题: 1. **实验灵活性** 允许通过命令行动态调整超参数(如学习率、批量大小),无需修改源码: ```bash python train.py --lr 0.01 --batch_size 64 ``` 2. **环境适应性** 适配不同硬件环境(如GPU数量)和数据集路径: ```bash python train.py --gpus 4 --data_dir /dataset/path ``` 3. **配置复用性** 通过配置文件保存实验参数组合,确保实验可复现性[^1][^2] #### 二、argparse核心组件解析 根据引用[1][3],其实现包含三个关键对象: | 对象 | 作用 | 代码示例 | |------|------|----------| | **ArgumentParser** | 创建参数解析容器 | `parser = argparse.ArgumentParser(description='训练描述')` | | **add_argument()** | 定义参数属性 | `parser.add_argument('--lr', type=float, default=0.001)` | | **parse_args()** | 解析命令行输入 | `args = parser.parse_args()` | #### 三、参数属性深度解析(引用[1]) ```python parser.add_argument( '--epochs', type=int, default=100, # 默认值 choices=[50,100,200], # 允许值范围 required=True, # 强制必须指定 help='训练轮数', # 帮助文档 metavar='EPOCHS' # 帮助文档显示名 ) ``` 1. **type**:强制类型转换(如`float`确保数值类型) 2. **nargs**:参数数量控制(如`nargs='+'`允许多值输入) 3. **action**:特殊行为(如`action='store_true'`用于布尔标志) #### 四、深度学习训练中的典型应用场景 1. **基础超参数配置** ```python parser.add_argument('--batch_size', type=int, default=32) parser.add_argument('--learning_rate', type=float, default=1e-3) ``` 2. **分布式训练配置**(引用[4]) ```python parser.add_argument('--gpus', type=int, default=4) parser.add_argument('--dist_backend', default='nccl') ``` 3. **模型加载与保存** ```python parser.add_argument('--resume', action='store_true') # 恢复训练 parser.add_argument('--ckpt_path', required=True) # 模型路径 ``` #### 五、与YACS/YAML的协同工作流(引用[2]) ```mermaid graph TB A[命令行参数] --> B{参数来源} B -->|优先级最高| C[argparse直接输入] B -->|优先级中| D[YAML配置文件] B -->|优先级低| E[默认参数] C & D --> F[YACS配置节点] F --> G[生成最终配置] ``` 实现代码: ```python # 创建YACS配置节点 _C = CN() _C.TRAIN = CN() _C.TRAIN.LR = 0.001 # 默认值 # 合并命令行参数 cfg.merge_from_list(args.opts) # 覆盖默认值 ``` #### 六、实际训练中的参数传递流程 ```python # train.py import argparse # 1. 创建解析器 parser = argparse.ArgumentParser(description='LLaMA-2预训练') # [^3] # 2. 添加参数 parser.add_argument('--data_dir', required=True) parser.add_argument('--use_fp16', action='store_true') # 3. 解析参数 args = parser.parse_args() # 4. 应用到训练系统 trainer = Trainer( data_path=args.data_dir, # 动态传入 mixed_precision=args.use_fp16 ) ``` ### 相关问题 1. 如何防止命令行参数与配置文件冲突? 2. 在分布式训练中如何同步不同节点的参数配置? 3. 为什么YAML+argparse的组合优于纯命令行参数? 4. 如何实现配置参数的版本控制与实验追踪? [^1]: argparse基础操作指南 [^2]: YACS与argparse协同配置 [^3]: 训练描述参数的作用解析 [^4]: 分布式训练参数配置实践
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

tangjunjun-owen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值