
AI
文章平均质量分 85
栗子~~
多年一线开发经验,深耕软件行业多年,全栈工程师
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
java实战-Milvus 2.5.x版本向量库-通过集合字段变更示例学习相关api demo
摘要:本文介绍了在Milvus 2.5.x版本中进行集合字段变更的Java实现方法。由于Milvus不支持直接修改集合schema,需要通过创建新集合、迁移数据和后续操作三个步骤完成。文章对比了queryIteratorV2和searchIteratorV2的适用场景,推荐使用queryIteratorV2进行数据迁移。示例代码展示了如何通过Spring Boot控制器调用服务层实现字段变更逻辑,包括归一化向量处理、新集合创建和数据迁移等操作。作者提醒读者点赞支持,并在文末提供了相关技术文章的参考链接。原创 2025-07-09 09:50:34 · 803 阅读 · 0 评论 -
RAG 相关概念学习
文章摘要:RAG(检索增强生成)是一种结合检索与生成的问答技术,通过文档预处理、向量化存储、语义检索和LLM生成等步骤提升回答质量。关键环节包括:文档切分需保持语义完整,使用高质量嵌入模型(如BGE),设置合理的top-k值(3-5条),并采用混合检索方式(向量+关键词)。与传统关键词搜索相比,向量检索能捕捉语义关联,但需注意前期处理的精细度(如滑动窗口切分、精准prompt构建)。metadata辅助实现结果筛选、引用展示和数据分析。整体流程从文档准备到最终生成需8个步骤,涉及Tika、Qdrant等工具原创 2025-07-07 15:06:58 · 825 阅读 · 0 评论 -
java-Milvus 向量库(2.5.x版本)-连接池(多key)与自定义端点监听设计
本文介绍了Java Milvus连接池(MilvusClientV2Pool)的设计与实现,重点讲解了多key连接池管理和自定义端点监控功能。内容包括:1)连接池基础概念及多key机制;2)按业务模块划分连接池的设计方案;3)通过Spring Boot Actuator暴露连接池监控端点的方法;4)Milvus SDK依赖配置优化实践;5)完整的连接池配置代码示例。文章强调了对查询模块使用独立连接池的优化策略,并提供了安全配置和依赖管理的最佳实践。原创 2025-07-07 14:36:56 · 1178 阅读 · 0 评论 -
Python实战- Milvus 向量库 使用相关方法demo
本文介绍了使用Python操作Milvus向量数据库的实战方法。首先通过一个建表示例展示了如何创建包含普通字段和向量字段的表结构,并提供了详细的字段定义和连接管理代码。接着针对修改表结构场景,提出了通过创建新集合实现表结构变更的方案,并提供了新增字段和更新字段的示例代码。文章还包含了自动连接管理、向量索引创建等实用功能,帮助开发者快速上手Milvus数据库操作。所有代码示例均可直接运行,并附有执行效果截图。原创 2025-07-03 15:15:06 · 467 阅读 · 0 评论 -
Milvus 向量库相关知识点
本文介绍了Milvus向量数据库的核心知识点,重点对比了其与传统关系型数据库的差异。Milvus以Collection为基本单位,支持向量和普通字段的混合存储,提供多种索引类型(如IVF_FLAT、HNSW等)优化查询性能。文章详细解析了数据结构、索引创建方法(包括普通字段和向量字段)、以及向量相似度查询的参数配置,并对比了不同索引类型的适用场景与优缺点。通过表格形式清晰展示了Milvus与SQL术语的映射关系,帮助开发者快速理解这一专门为向量搜索设计的高性能数据库系统。原创 2025-07-02 09:00:00 · 706 阅读 · 0 评论 -
Milvus docker-compose 部署
摘要:本文介绍了使用Docker-compose部署Milvus向量数据库的详细步骤。首先下载最新版本(v2.6.0-rc1)代码,修改docker-compose.yml配置,包括etcd、minio和Milvus主服务的关键参数设置。重点说明了数据持久化目录的创建和端口映射配置。通过docker-compose up -d命令启动服务,并验证健康检查接口。最后提供停止服务的命令。该部署方式适合开发测试环境,整合了etcd和minio等依赖组件。原创 2025-07-01 14:53:29 · 373 阅读 · 0 评论 -
Embedding 模型-text2vec python服务化
本文介绍了如何使用Python将text2vec模型服务化,实现中文句子向量化功能。首先说明需要安装PyTorch依赖,并提供了安装验证方法。接着详细展示了核心代码实现:基于FastAPI框架构建REST服务,加载text2vec-base-chinese模型,定义/embed接口接收句子列表并返回向量结果。服务包含健康检查接口、完善的日志记录、异常处理和IP获取功能,通过配置文件管理模型参数和日志设置。该服务可将中文文本转换为向量表示,适用于各类NLP应用场景。原创 2025-06-27 09:52:54 · 459 阅读 · 0 评论 -
qdrant 向量库基础知识与使用流程
Qdrant是一个开源的高性能向量数据库,专为存储和检索高维向量数据设计。它支持语义搜索、相似度匹配及元数据过滤,适用于智能问答、推荐系统、图像检索等场景。核心功能包括向量存储、HNSW索引构建和多语言客户端支持。相比传统数据库,Qdrant更擅长处理机器学习模型生成的Embedding向量,但需自行实现备份容灾方案。其轻量级架构适合快速开发和小中型生产环境,可作为语义搜索、多模态检索等AI应用的底层基础设施。原创 2025-06-24 13:37:12 · 457 阅读 · 0 评论 -
qdrant 向量库的下载和安装
本文介绍了如何下载和安装qdrant向量数据库。首先从GitHub下载qdrant的二进制文件,然后解压到本地并创建配置文件config.yaml,配置端口和数据存储路径。接着创建startQdrant.bat启动脚本,运行后即可启动qdrant服务。整个过程简单易操作,不需要复杂的依赖安装。文末还附有启动成功的截图,并提醒读者点赞支持作者。原创 2025-06-24 13:37:23 · 434 阅读 · 0 评论 -
jdk 8 、集成langchain4j,调用open-ai模型的多轮对话demo
基于LangChain4j实现OpenAI多轮对话的Java Demo 本文介绍了一个使用JDK 8、LangChain4j框架调用OpenAI模型实现多轮对话的Java示例。项目包含三个核心模块:通过pom.xml引入LangChain4j核心库和OpenAI支持库;编写Controller层接收对话请求;Service层处理对话逻辑,包括维护用户对话历史、调用OpenAI API(GPT-3.5-turbo模型)和返回响应。特别说明:大陆用户需注意API调用限制和支付要求。系统预设AI为小说助手角色,支原创 2025-06-23 16:53:27 · 474 阅读 · 0 评论 -
JAVA-基于Kimi模型设计的多轮对话问答系统架构设计demo(粉丝福利)
本文介绍了一个基于Kimi模型设计的Java多轮对话问答系统架构Demo。该系统采用注解驱动开发,支持YAML配置和运行时动态参数调整。核心功能包括:多用户隔离存储、对话历史管理、失败重试机制等。架构分为多个模块,其中annotation模块通过ThreadLocal实现配置参数的线程安全存储与传递,支持通过@KimiConfig注解灵活控制重试次数等行为。系统提供扩展接口,便于集成日志统计等功能。整体设计简洁高效,适用于构建智能化对话服务。原创 2025-06-23 16:18:41 · 1219 阅读 · 0 评论 -
LangChain4j 概念
LangChain4j是一款开源的Java库,简化了大语言模型(LLM)在Java应用中的集成流程。它提供统一API,支持多种LLM提供商和向量存储,内置Prompt模板、聊天记忆管理、RAG(检索增强生成)等核心功能。文章详细介绍了LangChain4j的核心概念如LLM接入、PromptTemplate、记忆管理、Agent智能代理等,并列举了常用API接口和模块。该库与Spring Boot等框架紧密集成,开发者无需编写特定代码即可切换不同服务,适用于构建知识库问答、文档助手等AI应用场景。原创 2025-06-16 08:45:00 · 935 阅读 · 0 评论 -
RAG 与微调的区别、优劣与场景
本文对比了RAG(检索增强生成)与微调两种定制大模型的方法。RAG通过外部知识库检索增强模型输出,适用于知识频繁更新的客服、企业问答等场景,成本低但性能略低;微调直接修改模型参数,适合风格稳定的写作、高精准对话等需求,但成本高且更新周期长。文章建议根据业务需求选择方案:知识更新频繁选RAG,专业性强选微调,高要求场景可用两者组合模式。最后指出RAG+开源模型已成为企业私有化部署的主流选择。原创 2025-06-16 09:00:00 · 1172 阅读 · 0 评论