注意力机制及代码实现

注意力机制在计算机视觉的深度学习中起到关键作用,它帮助网络聚焦重要信息。本文介绍了通道注意力机制,如SENet、CBAM和ECA,并提供了PyTorch实现。这些机制能提升模型性能,常用于模型的特征提取层。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

博客来源于: Pytorch 图像处理中注意力机制的解析与代码详解

什么是注意力机制

注意力机制是CV深度学习里面常用到的一个小技巧,注意力机制的核心就是让网络去关注到它所需要关注的地方

当我们使用卷积网络去处理图片的时候,我们希望网络去关注应该注意的地方,而不是什么都关注。我们肯定不能自己手动去条件需要注意的地方,这个时候如何让卷积网络去自适应注意重要的位置就变得极为重要了

注意力机制就是实现网络自适应注意的一个方式,注意力机制可分为:通道注意力机制,空间注意力机制通道空间注意力机制.

  • 通道注意力机制: 沿通道方向自适应发现哪些feature map比较重要,然后网络更关注重要的语义特征。
  • 空间注意力机制: 自适应发现我们的feature map哪些区域是比较重要的,然后网络会更加关注这些重要的区域。
  • 空间通道注意力机制: 沿通道维和空间维度,去寻找重要的feature map以及feature map中的区域,让网络重点关注重要的地方。
<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@BangBang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值