pytorch 钩子函数hook 详解及实战

本文深入探讨PyTorch中的hook函数,包括Tensor和Module的注册钩子,如register_hook、register_forward_pre_hook、register_forward_hook和register_backward_hook。这些钩子用于在模型训练过程中捕获中间结果,进行特征图可视化、模型剪枝和量化等操作,以提升模型理解和性能。文中提供多个实用案例,展示了hook如何应用于模型的调试、优化和压缩。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PyTorch计算图动态图的机制,为了节省显存(内存),pytorch在计算过程中不保存中间变量包括中间层的特征图和非叶子张量的梯度等。在PyTorch中,钩子函数可以在模型训练过程中捕获中间结果,对其进行分析或者可视化,也可以在模型的参数更新过程中进行一些自定义操作。此时就需要注册一个钩子(hook)来导出需要的中间变量

1. 介绍

1.1 pytorch hook 函数种类

hook方法有四种:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@BangBang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值