tensorflow9-mnist手写数字识别进阶-多层神经网络建模

博客介绍了神经元模型、全连接概念,指出神经网络层数一般指隐藏层数量,展示了一层和两层全连接神经网络,还提及两层神经网络模型训练,并说明神经网络层次并非越多越好,受学习率、训练轮次等多种因素影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 大圆为一个神经元模型

全连接:相邻的两层之间所有的结点都会连接

神经网络的层数:一般指的谁隐藏层的数量

上图中的网络即为一层神经网络

以上即为两层的全连接神经网络

两层神经网络模型训练

神经网络的层次是不是越多越好?并不是越多越好   还与你的学习率  训练伦次等有关 是由多种因素共同决定的

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

chde2Wang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值