旋转向量
1. 轴角法
用一个轴绕着一定角度旋转表示旋转变换
轴角法表示:(x,y,z,θ)(x,y,z,\theta)(x,y,z,θ)
其中包含两个部分:
- 轴:(x,y,z)(x,y,z)(x,y,z)
- 角度:θ\thetaθ
2. 旋转向量
- 轴角法的轴:(x,y,z)(x,y,z)(x,y,z)方向的单位向量n⃗\vec nn
- 轴角法的角度:θ\thetaθ
旋转向量如下:
(xiθ,yiθ,ziθ)(x^i \theta,y^i \theta,z^i \theta)(xiθ,yiθ,ziθ)
旋转向量与旋转矩阵之间的转换
R=cosθI+(1−cosθ)nnT+sinθn∧ R=\cos\theta I+(1-cos\theta)n n^T+sin \theta n^{\wedge}R=cosθI+(1−cosθ)nnT+sinθn∧
通过以上公式就可以获得旋转矩阵与旋转向量的转换。
同理反向公式:
θ=arccostr(R)−12\theta=arccos \frac{tr(R)-1}{2}θ=arccos2tr(R)−1
Rn=nRn=nRn=n
因此对应于特征值为1的特征向量
这里介绍下反对称化符号^:
v=[a,b,c]v=[a,b,c]v=[a,b,c]
v∧=[0−cbc0−a−ba0]v^{\wedge} = \left[\begin{matrix}
0 &-c&b \\
c&0&-a \\
-b&a&0
\end{matrix}\right]v∧=⎣⎡0c−b−c0ab−a0⎦⎤
v∧b=v×bv^{\wedge} b=v \times bv∧b=v×b
欧拉角
按固定和相对分类
- 固定轴旋转,左乘
- 相对轴旋转,右乘
- 按不同轴分类(roll-z,pitch-y,yaw-x)
XYZ
- YZY
- ZYZ
- ZYX
- 等
欧拉角关于万向锁的问题,欧拉角比较直观,但是由于这个万向锁的问题,导致相关的迭代比较困难,因此在计算的时候,一般不用欧拉角,欧拉角一般用于输出和测试中,供认测试观看。
四元数
四元数理解相对比较困难,我们记住一些转换既可以了。
-
欧拉角和旋转矩阵带有奇异性(如万象锁)
-
所以四元数的优势就出来了(但是四元数不直观阿,但是没有奇异性导致他计算比较有优势)
q=[cos(θ2),nxsin(θ2),nysin(θ2),nzsin(θ2)] q=[\cos(\frac{\theta}{2}),n_x\sin(\frac{\theta}{2}),n_y\sin(\frac{\theta}{2}),n_z\sin(\frac{\theta}{2})]q=[cos(2θ),nxsin(2θ),nysin(2θ),nzsin(2θ)] -
其中nx,ny,nzn_x,n_y,n_znx,ny,nz为轴角法中的轴单位向量,θ\thetaθ为旋转角
下面进一步的介绍四元数
- 加法和减法
- 乘法
- 模长
- 模长
- 两模长乘法公式
- 共厄
- 共厄公式
- 共厄和自己相乘
- 逆
- 逆的公式
- 逆与本身相乘
- 括号逆
- 数乘
如何用四元数表示旋转
三维点 p=[x,y,z]p=[x,y,z]p=[x,y,z]:对应的四元数[0,x,y,z]T[0,x,y,z]^T[0,x,y,z]T
三维点p′=[x′,y′,z′]p'=[x',y',z']p′=[x′,y′,z′]:对应的四元数[0,x,y,z]T[0,x,y,z]^T[0,x,y,z]T
q是一个单位四元数,它指定了旋转,那么转换公式如下:
p′=qpq−1 p'=qpq^{-1}p′=qpq−1
最后把q′的虚部取出来就可以了,就是转换后的坐标点q'的虚部取出来就可以了,就是转换后的坐标点q′的虚部取出来就可以了,就是转换后的坐标点
四元数变旋转矩阵
q+=[s−vTvsI+v∧]q^+=\left[\begin{matrix}
s & -v^T \\
v & sI+v^\wedge
\end{matrix}\right]q+=[sv−vTsI+v∧]
q⊕=[s−vTvsI−v∧] q^⊕=
\left[\begin{matrix}
s& -v^T \\
v& sI-v^{\wedge} \end{matrix}\right]q⊕=[sv−vTsI−v∧]
[100TR]=q+q−1⊕\left[\begin{matrix} 1 & 0 \\ 0^T & R \end{matrix}\right]=q^+ q^{-1^⊕}[10T0R]=q+q−1⊕
R=vvT+s2I+2sv∧+(v∧)2R=v v^T +s^2 I+2sv^{\wedge}+(v^{\wedge})^2R=vvT+s2I+2sv∧+(v∧)2
相似-仿射-射影变换
- 欧式变换
正常变换,旋转加平移 - 相似变换
可大可小,但体积比保持不变,形状变了 - 仿射变换
可大可小,不但体积比不变,形状也可以变换,但平行性保持不变 - 射影变换
可大可小,都变了