大数据概述、Lambda架构和Kappa架构 - 软考大数据篇

王者杯·14天创作挑战营·第5期 10w+人浏览 502人参与

软考也加入了大数据相关的案例和论文写作。此文介绍下作者知道的一些知识点,希望能对读者考试有意。论文无法分享,因为不会写大数据论文的读者,一定会多少按照给出的方向去写,在机考环境下,如意抽中“下次再见”卡。如有相关方面所需的朋友,后台私信聊。如果您觉得文章还值得一看,麻烦点赞互粉,非常感谢~

软考关于大数据相关主要有两个架构,Lambda架构和Kappa架构。

先说结论,考试的时候能写下来:

Lambda和Kappa不是互相取代关系。Lambda架构支持离线数据,2套系统,批式全量处理,吞吐量大,历史数据能力强,所以当然的,系统开销大,编码开销大;Kappa架构1套系统,流式全量处理,吞吐量相对小,历史能力相对弱(不是没有!);均满足实时要求。

Lambda架构

Lambda架构由Nathan Marz提出,旨在处理大规模数据的批处理和实时计算需求。其核心思想是将数据流分为批处理层(Batch Layer)、速度层(Speed Layer)和服务层(Serving Layer)。

批处理层(Batch Layer):两个核心功能:存储数据集和生成Batch View。

加速层(Speed Layer):存储实时视图并处理传入的数据流,以便更新这些视图。

服务层(Serving Layer):用于响应用户的查询请求,合并Batch View 和Real-time View中的结果数据集到最终的数据集。

Kappa架构

Kappa架构由Jay Kreps提出,是对Lambda架构的简化。其核心思想是通过单一流处理引擎处理所有数据,摒弃了批处理层。Kappa架构将所有数据视为流,历史数据通过重放流的方式进行处理

对比

大数据5V

5个V:Volume(大规模)、Velocity(高速)、Variety(多样)、Value(价值低密度)、Veracity(真实性)。

大数据5个问题

  1. 5个问题:异构性(Heterogeneity)、规模(Scale)、时间性(Timeliness)、复杂性(Complexity)、隐私性(Privacy)。
  2. 大数据5个挑战

  3. 5个挑战:数据获取、数据结构、数据集成、分析组织抽取建模、呈现结果。

  4. 大数据5个主要阶段

  5. 5个主要阶段:数据获取与记录、信息抽取/清洗/标注、数据集成/聚焦/表现、数据分析/建模、数据解释。

考试用典型架构

HBase:【实时数据和离线数据均支持】分布式、面向列的开源数据库,适合于非结构化数据存储。

HDFS(Hadoop分布式文件系统):【通常用于处理离线数据的存储】适合运行在通用硬件上的分布式文件系统(Distributed File System)。HDFS是一个高度容错性的系统,适合部署在廉价的机器上。HDFS能提供高吞吐量的数据访问,非常适合大规模数据集上的应用。

Flume:【日志服务器】高可用/可靠,分布式海量日志采集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。

Kafka:【高吞吐量的分布式发布订阅消息系统】它可以处理消费者在网站中的所有动作流数据。

ZooKeeper:开放源码的分布式应用程序协调服务,是Hadoop和HBase的重要组件。它是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组服务等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值