Kaggle上遇到的那些坑-----提交结果(submission.csv)

Kaggle上提交训练结果有两种方式:

  1. 在Kaggle页面上直接提交
  2. 使用指令提交

先看第一种提交方式

1、Kaggle页面上直接提交

        

不过,目前为止这个页面我只见过一次,后面再打开就不能提交了,好吧这是强迫我使用命令行提交啊。

2、使用指令提交结果

首先,你要从kaggle上下载一个API Token,用以标识你的身份:

        

点击下载后,会得到一个Kaggle.json的文件,将这个文件放到/.kaggle文件夹下:

       

注意:文件路径是在Administrator/.kaggle下,置于为什么kaggle前面会有一个点,好像是在mac下表示不可见。

其次,就是要安装kaggle,

    安装方式为:命令行输入 pip install kaggle

 

最后,赋值命令行

       

点击copy按钮,将复制的命令输入到cmd窗口。这是一个api接口,感兴趣的可以去读一下。

最后,执行代码:

       

注意:关于这个submission.csv的存放位置,一定要放在Administrator下,一定要放在Administrator下,一定要放在Administrator下,重要的事情说三遍!!!

 

 

 

 

 

 

 

 

<think>我们正在处理用户关于如何下载Kaggle上的tmdb-box-office-prediction数据集的问题。 根据用户提供的引用信息,我们知道该数据集确实存在于Kaggle上,并且引用[2]还提供了两个额外的数据链接(这些可能是额外的特征或更多的训练数据)。 但是,用户当前的问题是如何下载这个数据集。 步骤: 1. 用户需要有一个Kaggle账户。 2. 用户需要安装Kaggle API或者通过网页下载。 由于用户没有提供更多上下文(例如,是否愿意使用API),我们将提供两种方法:通过网页下载和使用Kaggle API下载。 注意:Kaggle数据集下载通常需要登录,并且有些比赛数据集需要接受比赛规则才能下载(但tmdb-box-office-prediction是一个公开数据集,应该可以直接下载)。 另外,引用[1]提到用户在处理这个数据集,引用[2]提供了额外的数据链接,因此我们也可以告知用户这些额外的数据源。 回答结构: 1. 介绍两种下载方法(网页和API)。 2. 对于网页下载,给出具体步骤。 3. 对于API下载,给出步骤(包括安装、配置、下载命令)。 4. 提到额外的数据链接(引用[2]),供用户参考。 注意:使用Kaggle API需要配置API token,我们将说明如何获取。 由于用户要求用中文回答,我们将使用中文。</think>### 如何下载 Kaggle 上的 TMDB Box Office Prediction 数据集 #### 🧾 方法一:通过 Kaggle 网页下载(推荐初学者) 1. **访问数据集页面** 打开 [TMDB Box Office Prediction 数据集页面](https://www.kaggle.com/c/tmdb-box-office-prediction/data) > *需先注册/登录 Kaggle 账户* 2. **接受比赛规则** - 点击页面右侧 "I Understand and Accept" 按钮接受规则 - 首次下载需验证手机号(仅需1次) 3. **下载数据文件** 在 "Data" 选项卡中找到以下文件点击下载: ```markdown train.csv # 主训练集 (3000+电影数据) test.csv # 测试集 sample_submission.csv # 提交格式示例 ``` #### ⚙ 方法二:使用 Kaggle API(高效批量下载) 1. **安装 API 工具包** ```bash pip install kaggle # Python 环境需已配置 ``` 2. **配置 API 密钥** -Kaggle 账户设置中生成 `kaggle.json` 文件 - 保存到: `~/.kaggle/kaggle.json` (Linux/Mac) 或 `C:\Users\<user>\.kaggle\kaggle.json` (Windows) 3. **执行下载命令** ```bash kaggle competitions download -c tmdb-box-office-prediction ``` > 文件将下载为 `tmdb-box-office-prediction.zip` #### 🔍 额外数据资源(引用[2]) 建议同时下载补充特征数据提升预测效果: 1. [额外特征数据集](https://www.kaggle.com/kamalchhirang/tmdb-competition-additional-features) 2. [扩展训练数据](https://www.kaggle.com/kamalchhirang/tmdb-box-office-prediction-more-training-data) #### ⚠️ 注意事项 - 数据集总大小约 50MB,包含电影元数据/海报等 - 使用 API 下载时确保网络稳定(可添加 `-w` 参数断点续传) - 解压密码(若有):通常为 `kaggle` --- ### 🔍 相关问题 1. 如何处理 TMDB 数据集中的缺失值和异常值? 2. TMDB 票房预测任务需要哪些特征工程技巧? 3. 如何评估 Kaggle 票房预测模型的准确性? 4. 该数据集与其他影视数据集(如 IMDb)相比有何特点? > 引用说明: > [^1]: Kaggle 数据集操作流程参考 > [^2]: 补充数据集来源说明
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值