Numpy数字类型 dtype

本文深入探讨了NumPy中的数据类型(dtype),包括基本数字类型如布尔值、整数、浮点数,以及复杂的结构化数据类型。通过实例展示了如何创建和使用这些类型,特别关注于结构化数组的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

NumPy 数字类型是dtype(数据类型)对象的实例,
每个对象具有唯一的特征。 这些类型可以是np.bool_,np.float32等。

使用数组标量类型

import numpy as np
dt = np.dtype(np.int32)
print(dt)

#int8,int16,int32,int64 可替换为等价的字符串 'i1','i2','i4',以及其他。
dt = np.dtype('i4')
print(dt)

运行结果

‘’’
结构化数据类型
‘’’

dt = np.dtype([('age',np.int8)])
print(dt)

运行结果

将结构化数据应用于ndarray对象

dt = np.dtype([('age',np.int8)])
a = np.array([(10,),(20,),(30,)],dtype = dt)
print(a)

运行结果

访问age列内容

dt = np.dtype([('age','i1')])
a = np.array([(10,),(20,),(30,)],dtype = dt)
print(a['age'])

接上一条,改变输出方式

结构化数据包含多个字段

student = np.dtype([('name','S20'),('age','i1'),('marks','f4')])
a = np.array([('joe',20,80),('susan',22,85),('tom',23,90),('fank',23,33)],dtype=student)
print(a)
print(a['name'])

运行结果

每个内建类型都有一个唯一定义它的字符代码:

‘b’:布尔值

‘i’:符号整数

‘u’:无符号整数

‘f’:浮点

‘c’:复数浮点

‘m’:时间间隔

‘M’:日期时间

‘O’:Python 对象

‘S’, ‘a’:字节串

‘U’:Unicode

‘V’:原始数据(void)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值