
machine learning
文章平均质量分 51
weixin_38887666
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
课时58 例子与直觉理解I
sigmoid激活函数: 本节通过一个详细的例子来说明神经网络是怎样计算复杂非线性函数的输入的; 由x1和x2两个输入特征,都是二进制的;只画了两个正样本和两个负样本; 这是右侧复杂的机器学习的一个简化版本; 我们的目标是学习一个非线性的判断边界,以区分正样本和负样本; 首先我们用左边的例子来说明神经网络如何训练出这 个非线性判断边界; x1 XOR x...原创 2018-07-26 19:46:10 · 428 阅读 · 0 评论 -
逻辑回归(logistic regression)与正规化方程
逻辑回归: 当我们的预测值y是离散值时,线性回归这种连续型函数是不适合的,我们需要创造一种称为逻辑回归的学习算法。这种学习算法最广泛的应用是在分类问题上。 逻辑回归函数假设: 假设我们要设计一个分类器,使得我们的输出在[0,1]之间,传统线性回归函数不能将预测值限制在一个范围内,我们可以假设预测函数为如下形式: 其图像为: 纵坐标表...转载 2018-07-19 20:04:25 · 2606 阅读 · 1 评论 -
课时56 模型展示1
大脑神经网络:下图为神经元 Dendrite(树突):接受来自其他神经元的信号 Axon(轴突):给其他神经元传递信号 神经元是一个计算单元,从树突接受一定数目的信号,做一些计算,并通过轴突传递给其他节点 神经元之间靠微弱电流进行交流 模拟一个神经元模型: 橘黄色物体类似于神经元细胞体,是一个计算单元 有时会添加一个额外节点x0,也被称作偏置单元或偏置神经元(恒等于1) ...原创 2018-07-21 10:16:31 · 249 阅读 · 0 评论 -
课时59 例子与直觉理解ii
主要内容:展示神经网络如何计算复杂的非线性模型的 用神经网络展示逻辑非运算: 取反的基本思想是在特征值前放一个较大负数作为权值; 如何计算下列的方程: 我们来做如下分析:当且仅当x1和x2都为0的情况下,结果为1 下面是用神经网络来表示同或: ...原创 2018-07-26 20:16:09 · 415 阅读 · 0 评论 -
课时57 模型展示II
这些Z值都是线性组合,是特定神经元x0,x1,x2,x3的加权线性组合; 可以将特征向量X定义为x0 x1 x2 x3组成的向量; 前向传播: 这个计算和h(x)的过程也称为前向传播,这样命名的原因是我们从输入单元的激活项开始,进行前向传播给隐藏层,计算隐藏层的激活项,然后继续向前传播,并计算输出层的激活项。这个一次计算激活项从输入层到隐藏层再到输出层的过程叫做前向传播; 下图为前向传播的...原创 2018-07-22 17:58:25 · 348 阅读 · 0 评论