【大数据spark SQL项目实战】日志分析(四):将清洗的数据存储到目标地址

本文介绍了一个使用Spark进行数据清洗的具体案例,包括从加载原始数据、转换为DataFrame、数据清洗及最终将清洗后的数据以Parquet格式按天分区保存的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

//.coalesce(1) 输出文件的个数
//.mode(SaveMode.Overwrite) 每次覆盖原来的文件
//.partitionBy(“day”) 以天为分区


import org.apache.spark.sql.{SaveMode, SparkSession}

/**
  * 使用Spark完成数据清洗操作
  */
object SparkStatCleanJob {

  def main(args: Array[String]): Unit = {
    val spark = SparkSession.builder().appName("SparkStatCleanJob").master("local[2]").getOrCreate()

    //加载文件
    val accessRDD = spark.sparkContext.textFile("file:///D:/test/access.log")

    //RDD 转 DF
    val accessDF = spark.createDataFrame(accessRDD.map(x => AccessConvertUtil.parseLog(x)),AccessConvertUtil.struct)

  //  accessDF.printSchema()
   // accessDF.show(false)
    //清洗的数据存储到目标地址
    //.coalesce(1) 输出文件的个数
    //.mode(SaveMode.Overwrite) 每次覆盖原来的文件
    accessDF.coalesce(1).write.format("parquet").mode(SaveMode.Overwrite).partitionBy("day").save("file:///D:/test/clean")

    spark.close()
  }
}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值