tensorflow保存和加载模型

本文详细介绍了在TensorFlow中如何使用Saver类保存和加载模型。包括创建Saver实例,通过调用save方法保存模型到指定路径,并利用get_checkpoint_state获取最新检查点文件路径,最后通过restore方法从路径加载模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

保存的结果:

checkpoint files:二进制文件,保存了所有weights,biases,gradient and all the other variables的值。也就是上图中的.data-00000-of-00001和.index文件。.data文件包含了所有的训练变量。以前的TensorFlow版本是一个ckpt文件,现在就是这两个文件了。与此同时,Tensorflow还有一个名为checkpoint的文件,只保存最新检查点文件的记录,即最新的保存路径。

 

m_saver = tf.train.Saver()
# 保存
m_saver.save(sess, './model/mnist_slp', global_step=i)
ckpt = tf.train.get_checkpoint_state('./model/mnist_slp')
path = ckpt.model_checkpoint_path
# 加载
m_saver.restore(sess, path)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值