Mapreduce实现求每一个订单中成交金额最大的三笔,分组TOPN(排序控制、分区控制、分组控制)

笔记待更新 

数据为:订单号,用户id,产品名,价格,数量

 

package mapreduce.ordertopn;

import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;



/**
 * 统计出每个订单中金额前n大的产品
 * @author THY
 */
public class OrderTopN {
	/**
	 * 
	 * @author THY
	 * 
	public static  class OrderTopNMapper extends Mapper<LongWritable, Text, OrderBean, NullWritable>{
		//每一行数据都要调用map一次,如果数据量很大的话需要很多次创建OrderBean,Text所以在全局创建一个对象,
		OrderBean ob = new OrderBean();
		Text k=new Text();
		@Override
		protected void map(LongWritable key, Text values,Context context)
				throws IOException, InterruptedException {
			String[] split = values.toString().split(",");
			ob.set(split[0], split[1], split[2], Float.parseFloat(split[3]), Integer.parseInt(split[4]));
			k.set(split[0]);
			//交给maptask的kv对象会被maptask序列化后存储,不会覆盖
			context.write(ob, NullWritable.get());
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值