什么是决策树?
决策树是广泛用于分类和回归的模型,本质上是一层层if/else问题中进行学习,并得出结论的。
决策树的思路在生活中很常见,比如公司招聘一个机器学习工程师流程:
这一系列问题呢就可以表示一颗决策树,树的每一个叶子节点代表一个问题或者结果。即为了分类录用和考察,利用三个特征论文、研究生、GPA、项目来构建一个模型。
下面简单用鸢尾花数据实现以下:
import numpy as np
import matplotlib.pyplot as plot
from sklearn import datasets
iris = datasets.load_iris()
X=iris.data[:,2:]
y=iris.target
plot.scatter(X[y==0,0],X[y==0,1])#y==0时索引对应X的特征,即类别0使对应的X
plot.scatter(X[y==1,0],X[y==1,1])
plot.scatter(X[y==2,0],X[y==2,1])
from sklearn.tree import DecisionTreeClassifier
#构建函数,max_depth决策树深度,criterion使entropy(熵下面介绍)
dt = DecisionTreeClassifier