主成分分析

主成分分析(PCA)是一种数据降维方法,通过寻找原始数据的线性组合,形成新的综合指标,保留大部分信息。PCA的核心是计算协方差矩阵的特征向量,以最大化方差。Python中,可以通过计算协方差矩阵及其特征值和特征向量来实现PCA。本文介绍了PCA的基本思想、数学模型、计算方法,并提供了Python代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

主成分分析 Principal component analysis

1 基本思想

主成分分析就是把原来的多个指标转化成少数几个代表性较好的综合指标,这少数几个指标能够反映原来指标大部分的信息(85%以上),并且各个指标之间保持独立,避免出现重叠信息。主成分分析主要起着降维简化数据结构的作用。

 1.1 数学模型

p个维度来描述一个实际问题,那么N个样本的数学模型可以表示为:

主成分分析的通常做法是寻求原指标的线性组合$F_i$。

其中系数矩阵需要满足如下的条件:

主成分分析的几何解释

1.2 主成分的计算

二维情况下,N个样本的分布情况

我们已经把主成分F1和F2的坐标原点放在平均值($\hat x_1, \hat x_2$)所在处,从而使得F1和F2称为中心化的变量,即F1和F2的样本均值都是零。

因此,F1可以表示为

那么怎么寻找合适的单位变量($a_11

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值