Pytorch入门>激活函数与多层感知机

本文探讨了三种常见的激活函数——Sigmoid、Tanh和ReLU,并通过Python的PyTorch库展示了它们的图形表现。这些激活函数在神经网络中引入非线性,使得模型能够学习更复杂的模式。此外,还介绍了多层感知机(MLP),它是通过隐藏层和激活函数实现的非线性模型,能够解决如异或问题等线性不可分问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. Sigmoid、Tanh、ReLU激活函数

一个小示例:


import torch
import matplotlib.pyplot as plt
from torch import nn


# In[25]:


x = torch.tensor([ x for x in range(-10,10,1)])
print(x)


# In[45]:


jihuo1 = nn.Sigmoid()
sig_y = jihuo1(x)
plt.plot(x.numpy(), sig_y.numpy())
plt.show()

# In[36]:

jihuo2 = nn.Tanh()
tan_y = jihuo2(x)
plt.plot(x.numpy(), tan_y.numpy())
plt.show()

# In[46]:
jihuo3 = nn.ReLU()
relu_y = jihuo3(x)
plt.plot(x,relu_y)
plt.show()

实验结果:
ReLU
f(x)=max(0,x)f(x) = max(0,x)f(x)=max(0,x)
ReLU
Tanh
f(x)=1−exp(−2x)1+exp(−2x)f(x) = \frac{1-exp(-2x)}{1+exp(-2x)}f(x)=1+exp(2x)1exp(2x)
Tanh
Sigmoid
f(x)=11+exp(−x)f(x) = \frac{1}{1+exp(-x)}f(x)=1+exp(x)1
sigmoid


2. 多层感知机SVM

多层感知机(SVM)就是隐藏层加上激活函数的非线性模型,激活函数对于机器学习来说非常重要,体现在公式上就是:
h=σ(W1+b1)h = \sigma(W_1 + b_1)h=σ(W1+b1)
o=W2h+b2o = W_2h+b_2o=W2h+b2
其中σ\sigmaσ就是代表激活函数。
多层感知机的出现主要可以解决异或的问题,模型与线性模型训练方法是一样的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值