y=sinx的概率分布推导

博客探讨了当角度x在[0,2π]上均匀分布时,正弦函数sin(x)的分布并非均匀。通过MATLAB模拟和推导,得出sin(x)在[0,π]和[π,2π]两个区间上的概率分布,并给出精确的概率密度函数公式。最终通过程序验证了推导的正确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

近期碰到这样一个小问题, 当 xxx 是在 [0,2π][0, 2\pi][0,2π] 上均匀分布时, 求 y=sin⁡(x)y=\sin(x)y=sin(x) 的分布?
然后发现百度出来的答案都是错的…

先上结论, 用matlab先看一下概率分布图, 代码如下:

for i = 1 : 100000
    a = unifrnd(0, 2 * pi);
    b(i) = sin(a);
end
cdfplot(b)

在这里插入图片描述

结果如图所示, 也就是说, sin⁡(x)\sin(x)sin(x)并不是如直觉所想, 在[−1,1][-1,1][1,1]上均匀分布!
注意到由于 sin⁡x=−sin⁡(x+π)\sin x = -\sin(x + \pi)sinx=sin(x+π), 因此 sin⁡(x)在[0,π]\sin(x)在[0,\pi]sin(x)[0,π]上的分布与sin⁡(x)在[π,2π]\sin(x)在[\pi,2\pi]sin(x)[π,2π]应该刚好对称。
那么我们进行推导, 当 xxx[0,π][0, \pi][0,π]上均匀分布时:
FY(y)=P(Y≤y)=P(sin⁡X≤y)=P(X≤sin⁡−1y)+P(X≥π−sin⁡−1y)F_Y(y)=P(Y\le y)=P(\sin X\le y)=P(X\le\sin^{-1}y)+P(X\ge\pi-\sin^{-1}y)FY(y)=P(Yy)=P(sinXy)=P(Xsin1y)+P(Xπsin1y)
这里我们假定, arcsin⁡:[−1;1]↦[−π/2;π/2]\arcsin :[-1 ; 1] \mapsto[-\pi / 2 ; \pi / 2]arcsin:[1;1][π/2;π/2]
接着有:
P(X≤sin⁡−1y)=∫−∞sin⁡−1yfX(x)dx=1π∫−∞sin⁡−1ydx=sin⁡−1yπ P(X\le\sin^{-1}y) =\int_{-\infty}^{\sin ^{-1} y} f_{X}(x) d x=\frac{1}{\pi}\int_{-\infty}^{\sin ^{-1} y} d x=\frac{\sin ^{-1} y}{\pi}P(Xsin1y)=sin1yfX(x)dx=π1sin1ydx=πsin1y
类似的,
P(X≥π−sin⁡−1y)=1−P(X≤π−sin⁡−1y)=sin⁡−1yπP(X\ge\pi-\sin^{-1}y)=1 - P(X\le \pi-\sin^{-1}y)=\frac{\sin ^{-1} y}{\pi}P(Xπsin1y)=1P(Xπsin1y)=πsin1y
因此 FY(y)=2sin⁡−1yπF_Y(y) = \frac{2\sin ^{-1} y}{\pi}FY(y)=π2sin1y.
xxx[π,2π][\pi, 2\pi][π,2π]上均匀分布时:
FY(y)=P(Y≤y)=P(sin⁡X≤y)=P(π−sin⁡−1y≤X≤2π+sin⁡−1y)F_Y(y)=P(Y\le y)=P(\sin X\le y)=P(\pi-\sin^{-1}y\le X\le2\pi+\sin^{-1}y)FY(y)=P(Yy)=P(sinXy)=P(πsin1yX2π+sin1y)
接着有:
P(X≤2π+sin⁡−1y)=∫−∞2π+sin⁡−1yfX(x)dx=1π∫−∞2π+sin⁡−1ydx=π+sin⁡−1yπ P(X\le2\pi+\sin^{-1}y) =\int_{-\infty}^{2\pi + \sin ^{-1} y} f_{X}(x) d x=\frac{1}{\pi}\int_{-\infty}^{2\pi + \sin ^{-1} y} d x=\frac{\pi + \sin ^{-1} y}{\pi}P(X2π+sin1y)=2π+sin1yfX(x)dx=π12π+sin1ydx=ππ+sin1y
类似的,
P(X≤π−sin⁡−1y)=−sin⁡−1yπP(X\le\pi-\sin^{-1}y)=\frac{-\sin ^{-1} y}{\pi}P(Xπsin1y)=πsin1y,
因此 FY(y)=π+2sin⁡−1yπF_Y(y) = \frac{\pi+2\sin ^{-1} y}{\pi}FY(y)=ππ+2sin1y.

综上,
FY(y)={sin⁡−1yπ+12y≥0π+2sin⁡−1y2πy<0. F_Y(y)= \begin{cases} \frac{\sin ^{-1}y}{\pi} + \frac{1}{2}&y\ge0 \\ \frac{\pi+2\sin ^{-1} y}{2\pi} & y<0\end{cases}.FY(y)={πsin1y+212ππ+2sin1yy0y<0.

用matlab程序验证:

y = -1 : 0.001: 1;
for i = 1 : length(y)
    if y(i) >= 0
        z(i) = asin(y(i))/pi + 0.5;
    else
        z(i) = (pi + 2 * asin(y(i))) / 2 / pi;
    end
end
plot(y,z)

最后两条线完美重合, 证明正确!
在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

B417科研笔记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值