
hands-on-ml
雨浅听风吟
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
sklearn进行数据清理标准化
%config Completer.use_jedi=Falsefrom tensorflow import kerasimport numpy as npimport matplotlib.pyplot as pltimport pandas as pdtrain_data_file_path='./zhengqi_train.txt'test_data_file_path='./zhengqi_test.txt'train_data=pd.read_table(train_data_f原创 2021-06-30 14:32:57 · 483 阅读 · 0 评论 -
利用keras来完成天池大赛蒸汽量预测
https://tianchi.aliyun.com/competition/entrance/231693/score蒸汽预测赛提地址按流程下载zhengqi_train.txtzhengqi_test.txtv1模型-0.8705最简单的模型直接不做处理直接导入神经网络打开提示%config Completer.use_jedi=False导入包from tensorflow import kerasimport numpy as npimport matplotlib.pypl原创 2021-06-30 14:29:54 · 200 阅读 · 0 评论 -
handson-ml 10-8什么是反向传播,它如何工作?反向传播和反向模式autodiff有什么区别
什么是反向传播反向传播是一种用于训练人工神经网络的技术如何工作它首先计算关于每个模型参数的成本函数的梯度,然后根据这些梯度进行梯度下降,这种反响传播步骤通常执行数千次或数百万次,并需要进行多个批次训练,直到模型参数收敛到最小成本函数为止。为了计算梯度,反向传播使用了反向模式autodiff,反向模式autodiff会在计算图上正向执行一次,计算当前训练批次的每个节点的值。然后反向执行一次,一次性计算所有梯度。区别反向传播是指训练神经网络的全部过程,而反向模式autodiff只是反向传播使用的手段原创 2021-06-25 11:00:49 · 288 阅读 · 0 评论 -
hands- on- ml 一 机器学习概览
文章目录1.机器学习类型2.监督/非监督学习2.1 监督学习2.2非监督学习2.3 半监督学习2.4强化学习3批量和在线学习3.1批量学习3.2 在线学习1.机器学习类型机器学习有多种类型,可以根据如下规则进行分类:1.是否在人类监督下进行训练(监督,非监督,半监督和强化学习)2.是否可以动态渐进学习(在线学习 vs 批量学习)3.它们是否只是通过简单地比较新的数据点和已知的数据点,还是...原创 2019-09-05 10:47:36 · 319 阅读 · 0 评论