本文采用小波包分解和随机森林分类器对uOttawa轴承数据集进行分类,比较简单,直接看代码就可以看懂,并可迁移至其他的一维数据集,比如心电信号,肌电信号,脑电信号,微振信号,各种声信号等等,顺便把python学一下,结合自己的领域学python能有效避免劝退。
数据集分为5类,分别为健康状态,内圈故障,外圈故障,滚动体故障和复合故障
其中复合故障数据文件CompF内容如下
健康工况数据文件Healthy内容如下
首先导入相关的信号处理模块,若没有小波模块pywt,要首先pip install pywt
import glob
from scipy.io import loadmat
from numpy import asarray
import matplotlib.pyplot as plt
import numpy as np
from scipy import signal
import scipy
import re
import os
import pandas as pd
import pywt
from scipy.fftpack import fft
from warnings import warn
from sklearn import metrics
import warnings
warnings.filterw