基于小波包和随机森林的uOttawa轴承数据集分类

本文采用小波包分解和随机森林分类器对uOttawa轴承数据集进行分类,比较简单,直接看代码就可以看懂,并可迁移至其他的一维数据集,比如心电信号,肌电信号,脑电信号,微振信号,各种声信号等等,顺便把python学一下,结合自己的领域学python能有效避免劝退。

数据集分为5类,分别为健康状态,内圈故障,外圈故障,滚动体故障和复合故障

其中复合故障数据文件CompF内容如下

健康工况数据文件Healthy内容如下

首先导入相关的信号处理模块,若没有小波模块pywt,要首先pip install pywt

import glob
from scipy.io import loadmat
from numpy import asarray
import matplotlib.pyplot as plt
import numpy as np
from scipy import signal
import scipy
import re
import os
import pandas as pd
import pywt
from scipy.fftpack import fft
from warnings import warn
from sklearn import metrics

import warnings 
warnings.filterw
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哥廷根数学学派

码字不易,且行且珍惜

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值