MATLAB环境下使用训练好的卷积神经网络进行大地电磁数据噪声抑制

大地电磁MT是一种比较成熟的地球物理勘探方法,通过计算地面测量的正交电场分量和磁场分量的扰动值研究地下介质的电性结构。MT在油气和工程勘探领域得到了广泛应用。但是由于该方法以天然电磁场为场源,存在地面信号弱和源激发随机的缺点,极易受到各类噪声的影响,致使后续反演结果中存在不确定性。因此,在MT方法的发展过程中,消除噪声一直是地球物理勘探研究的重点。

学者们提出了许多消除MT噪声的数据处理方法,主要包括频域方法、时-频域方法及时间序列编辑方法。频域处理方法最典型的代表是最小二乘法、鲁棒估计方法和远参考方法。利用最小二乘法进行去噪的过程中会产生“飞点”,导致估计值偏离真值。鲁棒估计方法要求大部分数据是可靠的,当输入数据包含较高水平的噪声时,鲁棒估计反而会加重噪声的影响。对于远参考去噪方法,远参考点的处理效果取决于参考点与本地信号及噪声的相关性,在实际应用中,在信号相关的情况下,很难选择一个合适位置设置参考点以保证测点与噪声源之间的距离足够远。时—频域处理方法的典型代表是小波变换和HHT变换。小波变换方法需进行母小波的选取,而对于噪声成分复杂、信号频谱丰富的实测MT数据,去噪小波变换中关于母小波的选取规则尚未有明确的结论。基于HHT变换的去噪方法的缺点是会在窗口的两端引入误差。对于时间序列编辑方法,认为在时域进行信噪分离是去除强人文噪声最直接、有效的手段。到目前为止,数学形态学、S变换、同步时间序列依赖、信号子空间增强、压缩感知重构等信号处理方法已经应用于MT数据的噪声压制,但这些方法都以一定的先验信息为前提,限制了方法的实际应用。

伴随着人工智能中深度学习算法的快速发展,深度学习算法对数据的学习能力逐渐提高,在智能控制、模式识别领域得到广泛应用,这也为大地电磁数据噪声抑制提供了新的机遇。为了更加智能化、低成本的对大地电磁数据噪声抑制, 越来越多的科学研究人员尝试将深度学习方法应用于大地电磁数据去噪中。

本例在MATLAB R2021B环境下使用训练好的卷积神经网络CNN进行大地电磁数据噪声抑制,部分代码如下:

clear
fd=200;%"fd" is
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哥廷根数学学派

码字不易,且行且珍惜

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值