MATLAB环境下使用二维高分辨时频分析方法提取波状分量(分离混合地震数据)。
为了得到更高的时频分辨率,近年来涌现出了大量的新的时频分析方法。有些以线性和非线性时频分析为基础,有些则另辟蹊径,比如Hilbert-Huang变换HHT。HHT包括经验模态分解EMD和希尔伯特变换两部分,其中经验模态分解是其核心部分。由于经验模态分解存在模态混叠和端点效应,集合经验模态分解和互补集合经验模态分解被提出,集合经验模态分解在一定程度上克服了模态混叠问题,互补集合经验模态分解提高了集合经验模态分解的计算效率,并减少了重构误差。
希尔伯特黄变换虽然能得到瞬时频率信息,但是其数学理论基础不够完备,模态混叠问题难以消除。匹配追踪算法与希尔伯特黄变换都属于贪婪算法,主要用于储层预测,噪声压制,匹配追踪时频分辨率较高,但是计算效率较低。稀疏约束的谱反演方法通过加入正则化约束条件控制稀疏程度,得到高分辨率的时频分析结果,近年来受到了越来越多的关注,稀疏参数的选择非常重要,如果选取不合适,可能会把一些有效的弱信号稀疏掉。
还有一些高分辨率高聚焦的时频分析方法是建立在线性非线性时频分析方法基础上的,比如分数阶变换,谱重排,同步压缩变换。1980年Namias在量子力学中引入了分数傅里叶变换FRFT这一概念,1987年McBride和Kerr对其进行了完善,之后一些学者做了进一步的分析研究,并把这种分数阶变换推广到了Radon-Wigner、分数阶短时傅里叶变换STFRFT、分数阶Gabor变换FRGT,分数阶小波变换FRWT、分数阶S变换等。
傅里叶变换是将时间域信号转换到频率域,傅里叶反变换是把频率域转到时间域,而分数阶傅里叶变换可以将信号(时间域或者频率域)转换到时间和频率之间的域。由于分数阶傅里叶变换采用的是全局核,因此只能得到频谱信息,不能得到时间局部化信息,与短时傅里叶变换相似,分数阶短时傅里叶变换通过加窗分段处理,能在时间频率域联合表示信号,分数阶小波变换具有线性特性,既有小波变换多分辨率特性,又有类似于分数阶傅里叶变换分数域表征信号的能力,适用于频率域能量非最佳聚焦信号的处理。
时频谱重排是一种重新分配时频谱坐标的方法,通过瞬时频率和群延迟的局部估计,将数据映