MATLAB环境下基于离散小波变换和主成分平均的医学图像融合方法

随着计算机技术和生物影像工程的日趋成熟,医学图像为医疗诊断提供的信息越来越丰富。目前,由于医学成像的设备种类繁多,导致医生获得的图像信息差异较大。如何把这些信息进行整合供医生使用成为当务之急。基于此,医学图像融合技术油然而生。该技术可以将来自不同成像设备的信息映射到一幅图像中,实现重要信息的高度整合,降低不确定性和冗余。和单一模态医学图像相比,融合后的图像可以为医生提供更丰富的生理信息

因为医学图像的成像设备不同,所以提供给医生的信息类型也不同。医学图像通常分为结构图像和功能图像。结构图像捕捉的是组织或器官的纹理和细节信息,例如计算机断层扫描CT和磁共振成像MRI。CT图像得到的横断面图像层厚准确、图像清晰、密度分辨率高。MRI图像无电离辐射,有极好的组织分辨能力,扫描层面方向比CT多,方便观察心脏和血管系统。和结构图像相比,功能图像分辨率较低,但其能清楚地描述组织或器官细胞的代谢情况。功能图像包括正电子发射计算机断层扫描PET和单光子发射计算机断层成像技术SPECT。前者利用少量核素进行全身显像,擅于发现恶性肿瘤;后者能特异性地显示病变的血流、功能和代谢的改变,有助于完成疾病的早期确诊。

鉴于此,提出一种基于离散小波变换和主成分平均的医学图像融合方法,程序运行环境为Matlab R2018a,部分代码如下:

clc; clear all;close all;
% Give number of input images
n=input('Number of images for fusion=');
for i=1:1:n;
    [imagefile1 , pathname]= uigetfile('*.jpg;*.bmp;','Open file Eye image'); 
    name=[pathname,imagefile1];
    if imagefile1 ~= 0 
          a{i} = double(imread([name]));
          [row,col,dim]=size(a{i});
     if (dim>2)
          a{i} = double(rgb2gray(imread([na
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哥廷根数学学派

码字不易,且行且珍惜

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值