『OpenCV-Python』获取图片的基本参数信息

点赞 + 关注 + 收藏 = 学会了

推荐 《OpenCV-Python专栏》

在图像处理领域,了解图像的基本信息是必不可少的第一步。

之前已经使用 cv2.imread() 方法将图片读取出来了。我们还可以使用 OpenCV 提供的一些方法去读取图片的尺寸、通道数、图片像素总数等信息。

获取图片宽高和通道数

通过 shape 属性可以直接获取图像的维度信息。

import cv2

# 读取图片
img = cv2.imread('德育处主任.jpeg')

# 获取图片的宽、高和通道数
height, width, channels 
### 使用 OpenCV-Python 进行图片批量处理 对于希望利用 `opencv-python` 对多个图像执行相同操作的需求,可以编写脚本来自动化这一过程。下面是一个简单的例子,展示了如何加载一系列图像并应用基本的操作,比如转换成灰度图。 #### 准备工作 确保已经安装了必要的库: ```bash pip install opencv-python ``` 如果遇到网络问题导致安装缓慢,也可以考虑通过包管理器来加速安装[^1]。 #### 编写批处理程序 创建一个新的 Python 文件,并加入如下代码片段用于遍历指定目录下的所有 JPEG 或 PNG 格式的文件,并将其转化为灰度版本保存到另一个文件夹中。 ```python import os import cv2 def process_images(input_folder, output_folder): # 创建输出文件夹(如果不存在) if not os.path.exists(output_folder): os.makedirs(output_folder) # 获取输入文件夹中的所有 .jpg 和 .png 文件名列表 images = [f for f in os.listdir(input_folder) if f.endswith('.jpg') or f.endswith('.png')] for image_name in images: try: # 构建完整的文件路径 input_path = os.path.join(input_folder, image_name) # 读取原始彩色图像 color_img = cv2.imread(input_path) # 将其转换为灰色调 gray_img = cv2.cvtColor(color_img, cv2.COLOR_BGR2GRAY) # 定义新的文件位置以及名称 new_file_name = "gray_" + image_name output_path = os.path.join(output_folder, new_file_name) # 存储处理后的图像至目标文件夹内 cv2.imwrite(output_path, gray_img) except Exception as e: print(f"Error processing {image_name}: {str(e)}") if __name__ == '__main__': INPUT_FOLDER = './input/' # 输入图像所在的文件夹路径 OUTPUT_FOLDER = './output/' # 输出图像要存储的位置 process_images(INPUT_FOLDER, OUTPUT_FOLDER) ``` 这段代码实现了从给定的输入文件夹读入每一张符合条件的照片,在对其进行颜色空间变换之后再另存于设定好的输出文件夹里。这里仅作为示范提供了最基础的功能;实际应用场景下可能还需要根据具体需求调整参数设置或是增加额外的数据预处理步骤[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值