计算机视觉工程师在面试过程中主要考察三个内容:图像处理、机器学习、深度学习。然而,各类资料纷繁复杂,或是简单的知识点罗列,或是有着详细数学推导令人望而生畏的大部头。为了督促自己学习,也为了方便后人,决心将常考必会的知识点以通俗易懂的方式设立专栏进行讲解,努力做到长期更新。此专栏不求甚解,只追求应付一般面试。希望该专栏羽翼渐丰之日,可以为大家免去寻找资料的劳累。每篇介绍一个知识点,没有先后顺序。想了解什么知识点可以私信或者评论,如果重要而且恰巧我也能学会,会尽快更新。最后,每一个知识点我会参考很多资料。考虑到简洁性,就不引用了。如有冒犯之处,联系我进行删除或者补加引用。在此先提前致歉了!
原理
膨胀,腐蚀,开运算,闭运算都是图像形态学操作。
我们只分析二值图像的情况,以下有颜色的是1,没有颜色的是0。
膨胀:
定义结构体B的原点,通常就是其中心。
在整张图上移动B,如果A与B有交集,那么填补B的原点所在的位置。
A ⊕ B = { x,y | B∩A≠∅ }
腐蚀:
定义结构体B的原点,通常就是其中心。
用B的原点遍历A中的每一个点,如果B中的所有点都落在A内,那么B的原点所处的位置保留,否则去除。
A ⊖ B = { x,y | B⊆A }
开运算:
先腐蚀后膨胀。