论文阅读Evolutionary Computation for Expensive Optimization: A Survey面向昂贵优化的进化计算

文章探讨了昂贵优化问题(EOP)在现代社会中的重要性,特别是在智慧城市和大数据时代的背景下。EOP指那些评估解决方案时需付出高昂代价的最优化问题。为应对这一挑战,文章提出了降低优化成本的三个关键方向,并展望了未来的研究趋势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


https://link.springer.com/article/10.1007/s11633-022-1317-4

1.昂贵优化问题

昂贵优化问题(Expensive Optimization Problem,EOP)是指在评估待选解决方案时,需要付出昂贵甚至难以承担的成本的一类最优化问题。随着社会的不断进步,以及智慧城市、物联网、大数据时代等带来的新兴挑战,更高效地解决EOP问题正成为推动各领域繁荣发展的必要条件。

2.降低成本的方式

降低优化成本的三个方向
在这里插入图片描述

3.未来的研究方向

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值