机器学习24:支持向量机基础

本文深入解析支持向量机(SVM)的基础概念,包括决策函数推导、拉格朗日乘子、KKT条件、SMO算法及松弛因子等核心理论。同时,探讨了SVM在非线性问题上的应用,通过核函数的选择和理解,解决复杂的数据分类问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器学习24:支持向量机基础

1.支持向量机概述/分类/决策函数推导:

        SVM支持向量机的概述

2.拉格朗日乘子/KKT条件/SMO算法/松弛因子:

        SVM支持向量机-拉格朗日乘子与对偶问题(1)

        SVM支持向量机-SMO算法公式推导(2)

        SVM支持向量机-软间隔与松弛因子(3)

3.支持向量机的核函数:

        支持向量机核函数的理解和选择

        SVM支持向量机-核函数(6)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值