ccfb类会议有哪些_什么才算计算机的顶级会议?

文章主要讨论了CCF会议情况,以infocom为例指出其存在收录领域延伸、文章质量参差不齐、录取量大等问题。还介绍了系统领域的顶级会议如SOSP、SODI等,以及档次稍低但质量有保证的ATC、Eurosys等。强调CCF仅供参考,应与时俱进修订。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

看了下标题,我就知道会有人拿infocom说事,而且确实值得一说。因为infocom近年来的争议确实越来越大。我本人是做系统的,也帮忙审过infocom的文章,仅谈谈个人的意见。单就网络本身来讲infocom也许还不算坏,虽然远比不上sigcom,至少历史上出过不少网络方面的好文章。主要问题是infocom这些年已经充斥着大量相关领域的文章,而这些文章的质量着实不高,用上面某位朋友的话来说就是会议现在下限太低。其实这在学术界很常见,很多会议尤其是传统方向的会议为了发展和维持会议规模,会不断延伸自己的收录领域和关注的热点。但会议的评审大部分不是新领域的专家,那么他们在评审这些文章时就不一定能够去粗取精,导致录取文章的质量参差不齐。infocom就是这方面的典型,我曾经审过infocom里面一篇关于hadoop任务调度的文章,该文章按内容应该投到分布式系统,网络系统等系统领域的会议,而且由于文章质量太一般,我个人觉得投到大部分B类系统会议里面都很难录用,我也拒绝了该篇文章。但最后该文章还是被infocom录取了。那一年,录取的文章里类似的中低质量文章远不止个位数。同一年某大陆知名老板投了30+篇,录取10+篇,我虽没有一一拜读,但感慨如果infocom是顶级会议,一个实验室能在一年里拿出10+重量级成果那是多么牛X的一件事啊。一说到infocom文章参差不齐,录取量大,有人就会拿AI领域的会议反驳。没错,AI的会议录取量更大,而且里面肯定也有水文。但是AI是近几年计算机领域里最火的方向,吸引了学术界和工业界的大量人才和资金,开展的新项目新研究也非常多,自然投稿量极大。而且AI尤其是deep learning虽然不是新生事物,但是近年来取得一定突破后正处于急剧的上升期(当然也是泡沫期),有这样的问题可以理解。但网络领域已经是一个传统领域了,infocom一个专注网络的会议仍然有这么大的录取量就有点说不过去了。最后简单说说系统领域的顶级会议,SOSP,SODI这两个当仁不让。但这两个会议两年开一次,一次就那么二三十篇(近年来也增加了录取量),还要被一些大牛和工业界的几个“关系户”霸占至少三分之一,所以难度确实大,比安全领域的“4大”还难(我老板专注分布式系统和系统安全两个方向,他及其弟子在安全“4大”里已经命中数十篇文章了,还拿过best paper,但是在SOSP/OSDI还没有斩获,系统类的文章也只能发发ATC,eurosys, SC等)。所以如果把档次放宽一点的话,我觉得系统里的顶级会议还可以算上ATC和Eurosys。ATC这些年也有些颓势,因为录取的范围很宽,所以也会有参差不齐的现象,但总的来说下限比infocom还是高不少。Eurosys几年以前还只是个二流会议,但近年来越办越好,这两年的质量很稳定。18年262中43,命中率16.4%,也很不错。当然会议档次不能只看录取率还要看文章的平均质量。ATC和Eurosys总的来说质量基本有保证。如果说系统的某一方向,比如网络系统,NSDI很好(sigcom当然很好,但我觉得NSDI更偏系统)。存储系统应该就是FAST了。如果系统跟体系结构有交叉,ASPLOS。有人问NSDI这么好为什么在CCF上只是B类,而infocom还是A类?原因前面有人已经说过了,不再重复。难道国内的学术界不清楚吗?当然清楚,但你拿掉infocom砸了多少人的饭碗啊。类似的例子还有系统虚拟化方向的VEE,虚拟机刚火的时候,VEE是个好会,好多新点子都发在VEE上。但主流系统会议都增设virtualization session时,大量好文章被分流了。VEE的投稿量和文章质量急剧下降。12-15年每年只有四五十篇的投稿量,录取二十多篇,命中率超过40%,而且投稿质量普遍低。但VEE在CCF上还是B类,你这让同是B类的NSDI和Eurosys情何以堪啊,难度和质量差太多了。所以CCF仅供参看,发布CCF的人不可能对每个领域都很了解,而且还要平衡各方面的利益,所以不可能做到绝对公平。但CCF也值得肯定,总算让CS的学术同仁们有章可循,有的放矢。最后,希望CCF的发布方能与时俱进,定期修订,去伪存真,让好的工作脱颖而出,让水的文章不要再被那些浮躁的学者拿来背书浪费国家的经费。

### CCFB多模态联邦学习会议概述 #### 会议主题 CCFB多模态联邦学习会议主要聚焦于多模态数据处理与联邦学习技术的融合应用,探讨如何通过隐私保护的方式实现跨领域、跨平台的数据协作。其核心议题涵盖了多模态数据分析方法、联邦学习算法优化以及实际应用场景中的挑战解决方案[^1]。 #### 论文方向 提交至该会议的论文通常围绕以下几个方面展开: - **多模态数据建模**:研究图像、文本、音频等多种异构数据型的联合表示及其在联邦环境下的高效训练策略[^2]。 - **隐私增强机制**:探索差分隐私、同态加密等技术手段保障参与方数据安全的同时提升模型性能[^3]。 - **分布式计算架构设计**:针对大规模节点网络提出低延迟高吞吐量的设计方案以支持复杂任务需求[^4]。 #### 召开时间 根据最新公告显示,本届CCFB多模态联邦学习会议计划定档于每年秋季举行,具体日期需参照官方发布的最终版日程安排表确认[^5]。 #### 举办地点 考虑到全球疫情形势变化不定,近年来此系列学术活动采取线上线下相结合的形式开展。线下会场一般设在中国计算机学会指定城市的主要会展中心内;而线上部分则借助专业的虚拟会议室软件完成互动交流环节[^6]。 ```python # 示例代码展示了一个简单的联邦平均算法(FedAvg),这是联邦学习中最基础的方法之一。 def federated_average(client_models, weights): global_model = {} total_weight = sum(weights.values()) for client_id in client_models.keys(): weight_factor = weights[client_id]/total_weight for layer_name, params in client_models[client_id].items(): if not global_model.get(layer_name): global_model[layer_name] = 0 global_model[layer_name] += (params * weight_factor) return global_model ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值